Skip to main content
Log in

microRNA s (9, 138, 181A, 221, and 222) and mesial temporal lobe epilepsy in developing brains

  • Communication
  • Published:
Translational Neuroscience

Abstract

Background: Recently, microRNAs (miRNAs) have attracted much attention as novel players in the pathogenesis of mesial temporal lobe epilepsy (MTLE) in mature and developing brains. This study aimed to investigate the expression dynamics of miR-9, miR-138, miR-181a, miR-221, and miR-222 in the hippocampus of an immature rat model during the three stages of MTLE development and in children with MTLE. Methodology: qPCR was used to measure expression levels during the three stages of MTLE development (2 h, 3, and 8 weeks after induction of lithium-pilocarpine status epilepticus, representing the acute, latent, and chronic stages, respectively. Expression levels were also measured in hippocampi obtained from children with MTLE and normal controls. Results: In the rat model, miR-9 was significantly upregulated during the acute and chronic stages relative to controls, but not during the latent stage. MiR-138, miR-221 and miR-222 were all downregulated during all three stages of MTLE development. MiR-181a was downregulated during the acute stage, upregulated during the chronic stage, and unaltered during the latent stage. In children, miR-9 and miR-181a were upregulated, while miR-138, miR-221, and miR-222 were downregulated. Conclusion: Modulation of these miRNAs may be a new strategy in designing antiepileptic and anticonvulsant therapies for the developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chang B. S., Lowenstein D.H., Epilepsy, N. Engl. J. Med, 2003, 349, 1257–1266

    Article  PubMed  Google Scholar 

  2. Ambros V., microRNAs: Tiny regulators with great potential, Cell, 2001, 107, 823–826

    Article  PubMed  CAS  Google Scholar 

  3. Omran A., Elimam D., Yin F., MicroRNAs: new insights into chronic childhood diseases, Biomed. Res. Int., 2013, 291826

  4. Omran A., Elimam D., Shalaby S., Peng J., Yin F., MicroRNAs: a light into the “black box” of neuropediatric diseases?, Neuromolecular. Med., 2012, 14, 244–261

    Article  PubMed  CAS  Google Scholar 

  5. Omran A., Elimam D., Webster K., Shehadeh L., Yin F., MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle, Cardiol. Young, 2013, [Epub ahead of print], doi: 10.1017/ S1047951113000048

    Google Scholar 

  6. Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T., Identification of tissue-specific microRNAs from mouse, Curr. Biol, 2002, 12, 735–739

    Article  PubMed  CAS  Google Scholar 

  7. Zhao C., Sun G., Li S., Shi Y., A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination, Nat. Struct. Mol. Biol., 2009, 16, 365–371

    Article  PubMed  CAS  Google Scholar 

  8. Bazzoni F., Rossato M., Fabbri M., Gaudiosi D., Mirolo M., Mori L., et al., Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals, Proc. Natl. Acad. Sci. USA, 2009, 106, 5282–5287

    Article  PubMed  CAS  Google Scholar 

  9. Morton S. U., Scherz P. J., Cordes K. R., Ivey K. N., Stainier D. Y., Srivastava D., microRNA-138 modulates cardiac patterning during embryonic development, Proc. Natl. Acad. Sci. USA, 2008, 105, 17830–17835

    Article  PubMed  CAS  Google Scholar 

  10. Siegel G., Obernosterer G., Fiore R., Oehmen M., Bicker S., Christensen M., et al., A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis, Nat. Cell. Biol, 2009, 11, 705–716

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y., Huang J. W., Li M., Cavenee W. K., Mitchell P. S., Zhou X., et al., MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression, Mol. Cancer. Res, 2011, 9, 1100–1111

    Article  PubMed  CAS  Google Scholar 

  12. Gong H., Song L., Lin C., Liu A., Lin X., Wu J., et al., Downregulation of miR-138 sustains NF-κB activation and promotes lipid raft formation in esophageal squamous cell carcinoma, Clin. Cancer. Res, 2013, 19, 1083–1093

    Article  PubMed  CAS  Google Scholar 

  13. Li Q. J., Chau J., Ebert P. J., Sylvester G., Min H., Liu G., et al., miR-181a is an intrinsic modulator of T cell sensitivity and selection, Cell, 2007, 129, 147–161

    Article  PubMed  CAS  Google Scholar 

  14. Xie W., Li Z., Li M., Xu N., Zhang Y., miR-181a and inflammation: miRNA homeostasis response to inflammatory stimuli in vivo, Biochem. Biophys. Res. Commun., 2013, 430, 647–652

    Article  PubMed  CAS  Google Scholar 

  15. Ouyang Y. B., Lu Y., Yue S., Xu L. J., Xiong X. X., White R. E., et al., miR181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo, Neurobiol. Dis., 2012, 45, 555–563

    Article  PubMed  CAS  Google Scholar 

  16. Bak M., Silahtaroglu A., Møller M., Christensen M., Rath M. F., Skryabin B., et al., MicroRNA expression in the adult mouse central nervous system, RNA, 2008, 14, 432–434

    Article  PubMed  CAS  Google Scholar 

  17. Kan A. A., van Erp S., Derijck A. A., de Wit M., Hessel E. V., O’Duibhir E., et al., Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response, Cell. Mol. Life. Sci., 2012, 69, 3127–3145

    Article  PubMed  CAS  Google Scholar 

  18. Dietrich J. B., The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier, J. Neuroimmunol., 2002, 128, 58–68

    Article  PubMed  CAS  Google Scholar 

  19. Racine R. J., Modification of seizure activity by electrical stimulation. II. Motor seizure, Electroencephalogr. Clin. Neurophysiol., 1972, 32, 281–294

    Article  CAS  Google Scholar 

  20. Ashhab M. U., Omran A., Kong H., Gan N., He F., Peng J., et al., Expressions of tumor necrosis factor Alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J. Mol. Neurosci., 2013, [Epub ahead of print], doi: 10.1007/s12031-013-0013-9

    Google Scholar 

  21. Karafin M., St Louis E. K., Zimmerman M. B., Sparks J. D., Granner M. A., Bimodal ultradian seizure periodicity in human mesial temporal lobe epilepsy, Seizure, 2010, 19, 347–351

    Article  PubMed  Google Scholar 

  22. Koh S., Gene expression in immature and mature hippocampus after status epilepticus, In: Schwartzkroin P. (Ed.) Encyclopedia of basic epilepsy research, Academic Press, Oxford, UK, 2009, 227–235

    Google Scholar 

  23. Bell G. S., Sander J. W., The epidemiology of epilepsy: the size of the problem, Seizure, 2001, 10, 306–314

    Article  PubMed  CAS  Google Scholar 

  24. Pitkänen A., Lukasiuk K., Molecular and cellular basis of epileptogenesis in symptomatic epilepsy, Epilepsy. Behav., 2009, 14, 16–25

    Article  PubMed  Google Scholar 

  25. Pitkänen A., Sutula T. P., Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy, Lancet. Neurol., 2001, 1, 173–181

    Article  Google Scholar 

  26. McKiernan R. C., Jimenez-Mateos E. M., Bray I., Engel T., Brennan G. P., Sano T., et al., Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis, PLoS One, 2012, 7, e35921

    Article  PubMed  CAS  Google Scholar 

  27. McKiernan R. C., Jimenez-Mateos E. M., Sano T., Bray I., Stallings R. L., Simon R. P., et al., Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death, Exp. Neurol., 2012, 237, 346–354

    Article  PubMed  CAS  Google Scholar 

  28. Hu K., Xie Y. Y., Zhang C., Ouyang D. S., Long H. Y., Sun D. N., et al., MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus, BMC. Neurosci., 2012, 13:115

    Google Scholar 

  29. Omran A., Peng J., Zhang C., Xiang Q. L., Xue J., Gan N., et al., Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy, Epilepsia, 2012, 53, 1215–1224

    Article  PubMed  CAS  Google Scholar 

  30. Peng J., Omran A., Ashhab M. U., Kong H., Gan N., He F., et al., Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy, J. Mol. Neurosci., 2013, 50, 291–297

    Article  PubMed  CAS  Google Scholar 

  31. Jimenez-Mateos E. M., Engel T., Merino-Serrais P., McKiernan R. C., Tanaka K., Mouri G., et al., Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects, Nat. Med., 2012, 18, 1087–1094

    Article  PubMed  CAS  Google Scholar 

  32. Jimenez-Mateos E. M., Bray I., Sanz-Rodriguez A., Engel T., McKiernan R. C., Mouri G., et al., miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132, Am. J. Pathol., 2011, 179, 2519–2532

    Article  PubMed  CAS  Google Scholar 

  33. Song Y. J., Tian X. B., Zhang S., Zhang Y. X., Li X., Li D., et al., Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b, Brain. Res., 2011, 1387, 134–140

    Article  PubMed  CAS  Google Scholar 

  34. Lubin F. D., Ren Y., Xu X., Anderson A. E., Nuclear factor-kappa B regulates seizure threshold and gene transcription following convulsant stimulation, J. Neurochem., 2007, 103, 1381–1395

    Article  PubMed  CAS  Google Scholar 

  35. Risbud R. M., Porter B. E., Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus, PLoS One, 2013, 8, e53464

    Article  PubMed  CAS  Google Scholar 

  36. Neilson J. R., Zheng G. X., Burge C. B., Sharp P. A., Dynamic regulation of miRNA expression in ordered stages of cellular development, Genes. Dev., 2007, 21, 578–589

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Peng or Fei Yin.

Additional information

Muhammad Usman Ashhab and Ahmed Omran contributed equally to this work

About this article

Cite this article

Ashhab, M.U., Omran, A., Gan, N. et al. microRNA s (9, 138, 181A, 221, and 222) and mesial temporal lobe epilepsy in developing brains. Translat.Neurosci. 4, 357–362 (2013). https://doi.org/10.2478/s13380-013-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0128-z

Keywords

Navigation