Skip to main content
Log in

Growth and approximation of solutions to a class of certain linear partial differential equations in ℝN

  • Published:
Mathematica Slovaca

Abstract

In this paper we consider the equation ∇2 φ + A(r 2)X · ∇φ + C(r 2)φ = 0 for X ∈ ℝN whose coefficients are entire functions of the variable r = |X|. Corresponding to a specified axially symmetric solution φ and set C n of (n + 1) circles, an axially symmetric solution Λ * n (x, η;C n ) and Λ n (x, η;C n ) are found that interpolates to φ(x, η) on the C n and converges uniformly to φ(x, η) on certain axially symmetric domains. The main results are the characterization of growth parameters order and type in terms of axially symmetric harmonic polynomial approximation errors and Lagrange polynomial interpolation errors using the method developed in [MARDEN, M.: Axisymmetric harmonic interpolation polynomials inN, Trans. Amer. Math. Soc. 196 (1974), 385–402] and [MARDEN, M.: Value distribution of harmonic polynomials in several real variables, Trans. Amer. math. Soc. 159 (1971), 137–154].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BERGMAN, S.: Integral Operators in the Theory of Linear Partial Differential Equations. Ergeb. Math. Grenzgeb. 23, Springer-Verlag, Inc., New York, 1969.

    Book  MATH  Google Scholar 

  2. BERGMAN, S.: Classes of solutions of linear partial differential equations in three variables, Duke J. Math. 13 (1946), 419–458.

    Article  MATH  MathSciNet  Google Scholar 

  3. GILBERT, R. P.: Function Theoretic Methods in Partial Differential Equations. Math. in Science and Engineering, Vol. 54, Academic Press, New York, 1969.

    Book  MATH  Google Scholar 

  4. GILBERT, R. P.— HOWARD, H. C.: On a class of elliptic partial differential equations, Port. Math. 26 (1967), 353–373.

    MATH  Google Scholar 

  5. GILBERT, R. P.— HOWARD, H. C.: The scope of the function theoretic approach for equations permitting a separation of variables, J. Math. Anal. Appl. 34 (1971), 671–684.

    Article  MATH  MathSciNet  Google Scholar 

  6. GILBERT, R. P.: Constructive Methods for Elliptic Equations. Lecture Notes in Math. 365, Springer Verlag, Inc., New York, 1974.

    MATH  Google Scholar 

  7. HILLE, E.: Analytic Function Theory, Vol. 2, Blaisdell, Waltham, MASS. 1962.

    Google Scholar 

  8. ISAMUKHAMEDOV, S. S.— ORAMOV, ZH.: Boundary value problems for an equation of mixed type of the second kind with non-smooth degeneration lines, Differ. Uravn. 18 (1982), 324–334 [Differ. Equ. 18 (1982), 263–271].

    MATH  MathSciNet  Google Scholar 

  9. KAPOOR, G. P.— NAUTIYAL, A.: On the growth of generalized axisymmetric potentials, Indian J. Pure Appl. Math. 13 (1982), 1240–1245.

    MATH  MathSciNet  Google Scholar 

  10. KHE KEN CHER: On the uniqueness of solution of the Tricomi problem for equations with two lines of degenracy, Partial Differential Euqaitons, Inst. Mat. Sibirsk Otdel, Akad. Nauk. SSSR, Novosibissk, 1980, 64–67 (Russian).

    Google Scholar 

  11. KUMAR, D.: Approximation of generalized axisymmetric potentials having fast growth, Indian J. Math. 45 (2003), 265–278.

    MATH  MathSciNet  Google Scholar 

  12. KUMAR, D.— ARORA, K. N.: Growth and approximation properties of generalized axysymmetric potentials, Demonstratio Math. XLIII (2010), 107–116.

    MathSciNet  Google Scholar 

  13. MARDEN, M.: Axisymmetric harmonic interpolation polynomials in RN, Trans. Amer. Math. Soc. 196 (1974), 385–402.

    MATH  MathSciNet  Google Scholar 

  14. MARDEN, M.: Value distribution of harmonic polynomials in several real variables, Trans. Amer. math. Soc. 159 (1971), 137–154.

    MATH  MathSciNet  Google Scholar 

  15. MARICHEV, O. I.: Boundary value problems for equations of mixed type with two lines of degenracy, Izv. Akad. Nauk Beloruss. SSR Ser. Fiz-Mat. Nauk 5 (1970), 21–29 (Russian).

    Google Scholar 

  16. MCCOY, P. A.: On the zeros of generalized axisymmetric potentials, Proc. Amer. Math. Soc. 61 (1976), 54–58.

    Article  MathSciNet  Google Scholar 

  17. MCCOY, P. A.: Polynomial approximation and growth of generalized axisymmetric potentials, Cand. J. Math. 31 (1979), 40–59.

    MathSciNet  Google Scholar 

  18. MCCOY, P. A.: Interpolation and approximation of solutions to a class of linear partial differential equations in several real variables, Complex Var. Elliptic Equations 26 (1994), 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  19. SRIVASTAVA, G. S.: Approximation and growth of generalized axisymmetric potentials, Approx. Theory Appl. (N.S.) 12 (1996), 96–104.

    MATH  Google Scholar 

  20. SZEGO, G.: Orthogonal Polynomials (2nd ed.). Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1959.

    Google Scholar 

  21. TERSENOV, S. A.: Basic boundary value problems for one ultra parabolic equation, Sibirsk. Mat. Zh. 42 (2001), 1413–1430.

    MATH  MathSciNet  Google Scholar 

  22. TERSENOV, S. A.: Cauchy problem for a system of equations of ultraparabolic type, Mat. Zametki 77 (2005), 768–774.

    Article  MathSciNet  Google Scholar 

  23. WINIARSKI, T. N.: Application of approximation and interpolation methods to the examination of entire functions of n complex variables, Ann. Polon. Math. 28 (1973), 97–121.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

About this article

Cite this article

Kumar, D. Growth and approximation of solutions to a class of certain linear partial differential equations in ℝN . Math. Slovaca 64, 139–154 (2014). https://doi.org/10.2478/s12175-013-0192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-013-0192-4

2010 Mathematics Subject Classification

Keywords

Navigation