Skip to main content
Log in

Identification of a novel mitogen-activated protein kinase kinase gene (MKK2) in the oilseed rape Brassica campestris

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) cascades participate in various processes, including plant growth and development as well as biotic and abiotic stress responses. MAPK kinases (MKKs), which link MPKs and MPKK kinases, are involved in MAPK cascades by mediating various plant stress responses. However, only a few MKKs from Brassica campestris (rape) have been functionally characterized. This study delivers the results from isolation and characterization of a novel gene, MKK2, from rape. Bioinformatics analysis revealed that the cDNA length of MKK2 is 1,344 bp with an open reading frame of 1,068 bp, which encodes a polypeptide containing 355 amino acids. The obtained MKK2 exhibited a predicted molecular mass of 39.3 kDa and an isoelectric point of 6.8. Quantitative real-time polymerase chain reaction analysis revealed that MKK2 expression can be induced by cold and salt. Western blot analysis revealed that MKK2 protein expression can be induced by cold, salt, and UV-B radiation. The MKK2 protein was localized in the nucleus. These results suggest that MKK2 is important for the regulation of cold- and salt-stress responses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GFP:

green fluorescent protein

MAPK (or MPK):

mitogen-activated protein kinase

MKKKs:

MAPKK kinases

MKKs:

MAPK kinases

MS:

Murashige and Skoog

qRT-PCR:

quantitative real-time polymerase chain reaction

RACE:

rapid amplification of cDNA ends

TTBS:

Tween-Tris-buffered saline

References

  • Agrawal G.K., Rakwal R. & Iwahashi I. 2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSMRK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  • Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T., Ausubel F.M. & Sheen J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–983.

    Article  CAS  PubMed  Google Scholar 

  • Cai G., Wang G., Wang L., Pan J., Liu Y. & Li D. 2014. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Plant Sci. 214: 57–73.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale F., Meskiene I., Ouaked F. & Hirt H. 2002. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogenactivated protein kinase kinases. Plant Cell 14: 703–711.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong Y.W., Moon B.C., Kim J.K., Kim C.Y., Kim M.C., Kim I.H., Park C.Y., Kim J.C., Park B.O., Koo S.C., Yoon H.W., Chung W.S., Lim C.O., Lee S.Y. & Cho M.J. 2003. Bwmk, a novel mitogen-activated protein kinase, locates in the nucleus and mediates pathogenic-related gene expression by activation of a transcription factor. Plant Physiol. 132: 1961–1972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coronado M.J., Gonzalez-Melendi P., Segui J.M., Ramirez C., Barany I., Testillano P.S. & Risueno M.C. 2002. MAPKs entry into the nucleus at specific interchromatin domains in plant differentiation and proliferation processes. J. Struct. Biol. 140: 200–213.

    Article  CAS  PubMed  Google Scholar 

  • Furuya T., Matsuoka D. & Nanmori T. 2014. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Lett. 588: 2025–2030.

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum D., Colangelo C., Williams K. & Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4: 117.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gygi S.P., Rochon Y., Franza B.R. & Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720–1730.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamel L.P., Nicole M.C., Sritubtim S., Morency M.J., Ellis M., Ehlting J., Beaudoin N., Barbazuk B., Klessig D., Lee J., Martin G., Mundy J., Ohashi Y., Scheel D., Sheen J., Xing T., Zhang S.Q., Seguin A. & Ellis B.E. 2006. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11: 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Hasthanasombut S., Supaibulwatana K., Mii M. & Nakamura I. 2011. Genetic manipulation of Japonica rice using the Os-BADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss. Organ Cult. 104: 79–89.

    Article  CAS  Google Scholar 

  • Hirt H. 1997. Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci. 2: 11–15.

    Article  Google Scholar 

  • Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300–372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwa C.M. & Yang X.C. 2008. The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol. Plant. 30: 277–286.

    Article  CAS  Google Scholar 

  • Jin T.C., Chang Q., Li W.F., Yin D.X., Li Z.J., Wang D.L., Liu B. & Liu L.X. 2010. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss. Organ Cult. 100: 219–227.

    Article  CAS  Google Scholar 

  • Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S. & Hirt H. 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93: 11274–11279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jonak C., Okresz L., Bogre L. & Hirt H. 2002. Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5: 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklof S., Till S., Bogre L., Hirt H. & Meskiene I. 2000. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 12: 2247–2258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim C.Y., Liu Y., Thorne E.T., Yang H., Fukushige H., Gassmann W., Hilderbrand D., Sharp R.E. & Zhang S. 2003. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15: 2707–2718.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong X., Pan J., Zhang D., Jiang S., Cai G., Wang L. & Li D. 2013. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem. Biophys. Res. Commun. 441: 964–969.

    Article  CAS  PubMed  Google Scholar 

  • Kong X.P., Pan J.W., Zhang M.Y., Xing X., Zhou Y., Liu Y., Li D.P. & Li D.Q. 2011. ZmMKK4, a novel group C mitogenactivated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ. 34: 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  • Kumar K., Rao K.P., Sharma P. & Sinha A.K. 2008. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol. Biochem. 46: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Kumar K.R., Srinivasan T. & Kirti P.B. 2009. A mitogenactivated protein kinase gene, AhMPK3 of peanut: molecular cloning, genomic organization, and heterologous expression conferring resistance against Spodoptera litura in tobacco. Mol. Genet. Genomics 282: 65–81.

    Article  CAS  PubMed  Google Scholar 

  • Lee J.S., Huh K.W., Bhargava A. & Ellis B.E. 2008. Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signaling modules. Plant Signal. Behav. 3: 1037–1041.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang W., Yang B., Yu B., Zhou Z., Li C., Jia M., Sun Y., Zhang Y., Wu F., Zhang H., Wang B., Deyholos M.K. & Jiang Y. 2013. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics 14: 392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Link V., Sinha A.K, Vashista P., Hofmann R.K., Proels R.K., Ehness R. & Rotisch T. 2002. A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett. 531: 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Liu H., Wang Y., Xu J. & Su T. 2008. Ethylene signaling is required for the acceleration of cell death induced by the activation of AtMEK5 in Arabidopsis. Cell Res. 18: 422–432.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y.B., Li X.R., Tan H.J., Liu M.L., Zhao X. & Wang J. 2010. Molecular characterization of RsMPK2, a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica. Plant Physiol. Biochem. 48: 836–844.

    Article  CAS  PubMed  Google Scholar 

  • MAPK Group. 2002. Mitogen-activated protein kinase cascade in plants: a new nomenclature. Trends Plant Sci. 7: 301–308.

    Article  Google Scholar 

  • Matsuoka D., Nanmori T., Sato K., Fukami Y., Kikkawa U. & Yasuda T. 2002. Activation of AtMEK1, an Arabidopsis mitogen activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J. 29: 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczyk M., Awotunde O.S., Muszynska G., Klessig D.F. & Dobrowolska G. 2000. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12: 165–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizoguchi T., Ichimura K., Irie K., Morris P., Giraudat J., Matsumoto K. & Shinozaki K. 1998. Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett. 437: 56–60.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H., Pitzschke A. & Hirt H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 10: 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A., Schikora A. & Hirt H. 2009. MAPK cascade signaling networks in plant defence. Curr. Opin. Plant Biol. 12: 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Popescu S.C., Popescu G.V., Bachan S., Zhang Z., Gerstein M., Snyder M. & Dinesh-Kumar S.P. 2009. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23: 80–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu J., Zhou L., Yun B., Nielsen H.B., Fiil B.K., Petersen K., MacKinlay J., Loake G.J., Mundy J. & Morris P.C. 2008. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 148: 212–222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez M.C., Petersen M. & Mundy J. 2010. Mitogenactivated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621–649.

    Article  CAS  PubMed  Google Scholar 

  • Romeis T. 2001. Protein kinases in the plant defence response. Curr. Opin. Plant Biol. 4: 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer H.J. & Weber M.J. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19: 2435–2444.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segui-Simarro J.M., Testillano P.S., Jouannic S., Henry Y. & Risueno M.C. 2005. MAP kinase expression and subcellular localization are developmentally regulated during early microspore embryogenesis. Histochem. Cell Biol. 123: 541–551.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y., Nasir K.H., Ito A., Kanzaki H., Matsumura H., Saitoh H., Fujisawa S., Kamoun S. & Terauchi R. 2007. A highthroughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant J. 49: 1030–1040.

    Article  CAS  PubMed  Google Scholar 

  • Teige M., Scheikl E. & Eulgem T. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell 15: 141–152.

    Article  CAS  PubMed  Google Scholar 

  • Tena G., Asai T., Chiu W.L. & Sheen J. 2001. Plant mitogenactivated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4: 392–400.

    Article  CAS  PubMed  Google Scholar 

  • Wang H., Ngwenyama N., Liu Y., Walker J.C. & Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang J., Zhang T.G., Zhang Y., Wang N., Wang Y.Y., Sun W.C., Chang Y. & Chen Q.Q. 2012. Molecular cloning and expression analysis of a novel MAP kinase gene BnMPK6 in Brassica napus. J. Lanzhou Univ. (Nat. Sci.) 48: 64–69.

    CAS  Google Scholar 

  • Xu J., Li Y., Wang Y., Liu H.X., Lei L., Yang H.L., Liu G.Q. & Ren D.T. 2008. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283: 26996–27006.

    Article  CAS  PubMed  Google Scholar 

  • Yang K.Y., Liu Y. & Zhang S. 2001 Activation of a mitogenactivated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98: 741–746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang N., Yue X.L., Chen X.L., Wu G.F., Zhang T.G. & An L.Z. 2012. Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana. Plant Cell Tiss. Organ Cult. 108: 201–212.

    Article  CAS  Google Scholar 

  • Zhang L., Li Y.Z., Lu W.J., Meng F., Wu C.A. & Guo X.Q. 2012a. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J. Exp. Bot. 63: 1–17.

    Article  Google Scholar 

  • Zhang M., Pan J., Kong X., Zhou Y., Liu Y., Sun L. & Li D. 2012b. ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. J. Plant Physiol. 169: 1501–1510.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S. & Klessig D.F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520–527.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T., Chen Q., Wang N., Xia X., Wang J., Chang Y., Yang Y., Yang N. & Sun W. 2013. Molecular cloning and characterization of the mitogen-activated protein kinase kinase gene (MKK4) and its promoter sequence from oilseed rape (Brassica campestris L.). Plant Cell Tiss. Organ Cult. 115: 341–353.

    Article  CAS  Google Scholar 

  • Zhang T., Liu Y., Yang T., Zhang L., Xu S., Xue L. & An L. 2006. Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem. 44: 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Zhou C., Cai Z., Guo Y. & Gan S. 2009. An Arabidopsis mitogenactivated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol. 150: 167–177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Guo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T.G., Wang, Y.Y., Wang, J. et al. Identification of a novel mitogen-activated protein kinase kinase gene (MKK2) in the oilseed rape Brassica campestris . Biologia 69, 1472–1481 (2014). https://doi.org/10.2478/s11756-014-0455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0455-8

Key words

Navigation