Skip to main content
Log in

The impact of biofilm-forming potential and tafi production on transport of environmental Salmonella through unsaturated porous media

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Understanding the factors influencing the transport of microbial pathogens, such as Salmonella and Escherichia coli, through porous media is critical to protecting drinking water supplies. The production of biofilms, along with individual biofilm-associated components, such as tafi, is believed to hinder transport of microorganisms through soil. This study investigated the relationship between biofilm formation and tafi production and the transport of environmental Salmonella through porous media. Thirty-two Salmonella isolates were initially assayed for their ability to form biofilms, from which a subset of these was selected to represent a range of high and low biofilm-formation potential and tafi formation capabilities. These were subsequently examined in unsaturated sand columns for transport characteristics. No obvious correlation was observed between Salmonella phenotypes and column retention. The results indicated that while transport of well-characterized laboratory E. coli strains can often be hindered by the presence of tafi and the potential to form biofilms, the presence of tafi did not retard the transport of the Salmonella strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Lail N.I. & Camesano T.A. 2003. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ. Sci. Technol. 37: 2173–2183.

    Article  PubMed  CAS  Google Scholar 

  • Bjergbaek L.A. & Roslev P. 2005. Formation of nonculturable Escherichia coli in drinking water. J. Appl. Microbiol. 99: 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  • Brombacher E. et al. 2003. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149: 2847–2857.

    Article  PubMed  CAS  Google Scholar 

  • Da Re S. & Gingo J.-M. 2006. A CsgD-Independent Pathway for cellulose production and biofilm formation in Escherichia coli. J. Bacteriol. 188: 3073–3087.

    Article  PubMed  Google Scholar 

  • Gebbink M.F.B.G. et al. 2005. Amyloids — a functional coat for microorganisms. Nat. Rev. Microbiol. 3: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Ginn T.R. et al. 2002. Processes in microbial transport in the natural subsurface. Adv. Water Res. 25: 1017–1042.

    Article  CAS  Google Scholar 

  • Gualdi L. et al. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154: 2017–2024.

  • Hall-Stoodley L. at al. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Hammar M. et al. 1996. Nucleator-dependent intercellular assembly of adhesive tafi organelles in Escherichia coli. P. Natl. Acad. Sci. USA 93: 6562–6566.

    Article  CAS  Google Scholar 

  • Heaton J.C. & Jones K. 2008. Microbial contamination of fruit and vegetables and the behavior of enteropathogens in the phyllosphere: a review. J. Appl. Microbiol. 104: 613–626.

    Article  PubMed  CAS  Google Scholar 

  • Jonas K. et al. 2007. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. 7: 70.

    Article  PubMed  Google Scholar 

  • Kaneene J.B. et al. 2008. Changes in tetracycline susceptibility of enteric bacteria following switching to nonmedicated milk replacer for dairy calves. J. Clin. Microbiol. 46: 1968–1967.

    Article  PubMed  Google Scholar 

  • Landini P. & Zehnder A.J. 2002. The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating the expression of lipopolysaccharide and flagellar genes. J. Bacteriol. 184: 1522–1529.

    Article  PubMed  CAS  Google Scholar 

  • Macler B.A. & Merkle J.C. 2000. Current knowledge on groundwater microbial pathogens and their control. Hydrogeol. J. 8: 29–40.

    Article  Google Scholar 

  • Olsén A. et al. 1993. Environmental regulation of curli production in Escherichia coli. Infect. Agent. Dis. 2: 272–274.

    Google Scholar 

  • Prouty A.M. et al. 2002. Biofilm formation and interaction with the surfaces of gallstone by Salmonella spp. Infect. Immun. 70: 2640–2649.

    Article  PubMed  CAS  Google Scholar 

  • Reisner A. et al. 2006. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J. Bacteriol. 188: 3572–3581.

    Article  PubMed  CAS  Google Scholar 

  • Rijnaarts H.H.M. et al. 1995. Reversibility and mechanism of bacterial adhesion. Colloid Surface B. 4: 5–22.

    Article  CAS  Google Scholar 

  • Römling U. et al. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180: 722–731.

    PubMed  Google Scholar 

  • Sambrook J. et al. 1989. Molecular Cloning: A Laboratory Manual, Vol. 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Stevik T.K. et al. 2004. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38: 1355–1367.

    Article  PubMed  CAS  Google Scholar 

  • Toba, F.A. 2008 Characterization of the physiological implications of Defective Lambdoid Phage DLP12 in Escherichia coli. PhD Dissertation, Cornell University

  • Tufenkji N. 2007. Modeling microbial transport in porous media: Traditional approaches and recent developments. Adv. Water Resour. 30: 1455–1469.

    Article  Google Scholar 

  • Vidal O. et al. 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases tafi expression. J. Bacteriol. 180: 2442–2491.

    PubMed  CAS  Google Scholar 

  • Walker S.L. et al. 2005. Influence of growth phase on adhesion kinetics of Escherichia coli D21g. Appl. Environ. Microb. 71: 3093–3099.

    Article  CAS  Google Scholar 

  • Winfield M.D. & Groisman E.A. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microb. 69: 3687–3694.

    Article  CAS  Google Scholar 

  • Yang H.H. et al. 2004. High diversity among environmental Escherichia coli isolates from a bovine feedlot. Appl. Environ. Microb. 70: 1528–1536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammo S. Steenhuis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvucci, A.E., Zhang, W., Morales, V.L. et al. The impact of biofilm-forming potential and tafi production on transport of environmental Salmonella through unsaturated porous media. Biologia 64, 460–464 (2009). https://doi.org/10.2478/s11756-009-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0102-y

Key words

Navigation