Skip to main content
Log in

Measurement of critical heat flux conditions under vacuum

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Determination of optimum conditions for waste oil (used motor oils, transformer oils) regeneration using vacuum distillation was attempted including the search for the optimum temperature difference between the heating surface and the boiling point of the liquid. Optimum temperature allowed the distillation equipment to operate at maximum performance. Equipment suitable for the measurement of boiling curves under atmospheric pressure and vacuum conditions was assembled. These curves were used to determine the optimum temperature difference of various substances including waste oils. Properties of pure substances, for example water, ethanol, hexane, heptane, isooctane, decane, or dodecane, were measured with this equipment under atmospheric pressure. Results of various liquids measurements under vacuum and atmospheric pressure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addoms, J. N. (1948). Heat transfer at high rates to water boiling outside cylinders. D.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • Auracher, H., & Buchholz, M. (2005). Experiments on the fundamental mechanisms of boiling heat transfer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 1–22. DOI: 10.1590/s1678-58782005000100001.

    Article  Google Scholar 

  • Berenson, P. J. (1962). Experiments on pool-boiling heat transfer. International Journal of Heat and Mass Transfer, 5, 985–999. DOI: 10.1016/0017-9310(62)90079-0.

    Article  CAS  Google Scholar 

  • Bernardin, J. D., & Mudawar, I. (1999). The Leidenfrost point: Experimental study and assessment of existing models. Journal of Heat Transfer, 121, 894–903. DOI: 10.1115/1.2826080.

    Article  Google Scholar 

  • Bonilla, C. F., Grady, J. J., & Avery, G. W. (1965). Pool boiling heat transfer from scored surfaces. Chemical Engineering Progress Symposium Series, 61(57), 280–288.

    Google Scholar 

  • Chai, L. H., & Shoji, M. (2001). Boiling curves - bifurcation and catastrophe. International Journal of Heat and Mass Transfer, 44, 4175–4179. DOI: 10.1016/s0017-9310(01)00059-x.

    Article  CAS  Google Scholar 

  • Cichelli, M. T., & Bonilla, C. F. (1945). Heat transfer to liquids boiling under pressure. Transactions of AIChE, 41, 755–787.

    CAS  Google Scholar 

  • Clark, H. B., Strenge, P. S., & Westwater, J. W. (1959). Active sites of nucleate boiling. Chemical Engineering Progress Symposium Series, 55(29), 103–110.

    Google Scholar 

  • Cooke, D., & Kandlikar, S. G. (2011). Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. Journal of Heat Transfer, 133(5), 052902. DOI: 10.1115/1.4003046.

    Article  Google Scholar 

  • Cryder, D. S., & Finalbargo, A. C. (1937). Heat transmission from metal surfaces to boiling liquids: Effect of temperature of liquid on liquid film coefficient. Transactions of AIChE, 50, 346–362.

    Google Scholar 

  • Farber, E. A., & Scorah, E. L. (1948). Heat transfer to water boiling under pressure. Transactions of the ASME, 70, 369–384.

    CAS  Google Scholar 

  • Griffith, P., & Wallis, J. D. (1960). The role of surface conditions in nucleate boiling. Chemical Engineering Progress Symposium Series, 56, 49–63.

    Google Scholar 

  • Hsu, S. T., & Schmidt, F. W. (1961). Measured variations in local surface temperatures in pool boiling of water. Journal of Heat Transfer, 83, 254–260. DOI: 10.1115/1.3682252.

    Article  CAS  Google Scholar 

  • Kim, S. H., Ahn, S. H., Kim, J. W., Kaviany, M., & Kim, H. M. (2013). Dynamics of water droplet on a heated nanotubes surface. Applied Physics Letters, 102(23), 233901. DOI: 10.1063/1.4809944.

    Article  Google Scholar 

  • Kurihara, H. M., & Myers, J. E. (1960). The effects of superheat and surface roughness on boiling coefficients. AIChE Journal, 6, 83–86. DOI: 10.1002/aic.690060117.

    Article  CAS  Google Scholar 

  • Lee, Y., Pioro, I., & Park, H. J. (1994). An experimental study on a plate type two-phase closed thermosyphon. In Y. Kobayashi, & K. Oshima (Eds.), Proceedings of the 4th International Heat Pipe Symposium, May 16–18, 1994. Tsukuba, Japan: Japan Association for Heat Pipes.

    Google Scholar 

  • Misale, M., Guglielmini, G., & Priarone, A. (2011). Nucleate boiling and critical heat flux of HFE-7100 in horizontal narrow spaces. Experimental Thermal and Fluid Science, 35, 772–779. DOI: 10.1016/j.expthermflusci.2010.06.009.

    Article  CAS  Google Scholar 

  • Nakoryakov, V. E., Misyura, S. Ya., & Elistratov, S. L. (2012). The behavior of water droplets on the heated surface. International Journal of Heat and Mass Transfer, 55, 6609–6617. DOI: 10.1016/j.ijheatmasstransfer.2012.06.069.

    Article  Google Scholar 

  • Nukiyama, S. (1934). Maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure. Journal of Japanese Society of Mechanical Engineering, 37, 367–374. (in Japanese)

    Google Scholar 

  • Pioro, I. L., Park, H. J., & Lee, Y. (1996). Heat transfer in a two-phase closed thermosyphon: Horizontal flat plate type. In Proceedings of the 5th International Symposium on Thermal Engineering and Science for Cold Regions, May 19–22, 1996 (pp. 489–494). Ottawa, Canada.

    Google Scholar 

  • Pioro, I. (1997). Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosyphon. In Proceedings of the 10th International Heat Pipe Conference, September 21–25, 1997 (Paper H1-5). Stuttgart, Germany.

    Google Scholar 

  • Pioro, L. S., & Pioro, I. L. (1997). Industrial two-phase thermosyphons (Chapters 2 and 3). New York, NY, USA: Begell House.

    Google Scholar 

  • Rops, C. M., Lindken, R. H., Velthuis, J. F. M., & Westerweel, J. (2009). Enhanced heat transfer in confined pool boiling. International Journal of Heat and Fluid Flow, 30, 751–760. DOI: 10.1016/j.ijheatfluidflow.2009.03.007.

    Article  CAS  Google Scholar 

  • Tolubinskiy, V. I. (1980). Heat transfer under boiling (Chapters 4 and 5). Kiev, URSS: Naukova Dumka. (in Russian)

    Google Scholar 

  • Tong, L. S., & Tang, Y. S. (1997). Boiling heat transfer and two-phase flow (2nd ed.). Washington, DC, USA: Taylor & Francis.

    Google Scholar 

  • Wang, X. F., Rahman, Md. A., Jacobi, A. M., & Hrnjak, P. S. (2013). Dynamic wetting behavior and water drops on microgrooved surfaces. Heat Transfer Engineering, 34, 1088–1098. DOI: 10.1080/01457632.2013.763544.

    Article  CAS  Google Scholar 

  • Yang, L., & Shivpuri, R. (2007). A water evaporation based model for lubricant dryoff on die surfaces heated beyond the Leidenfrost point. Journal of Manufacturing Science and Engineering, 129, 717–725. DOI: 10.1115/1.2738126.

    Article  Google Scholar 

  • Young, R. K., & Hammel, R. L. (1965). Higher coefficients for heat transfer with nucleate boiling. Chemical Engineering Progress Symposium Series, 61(59), 264–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Timár.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemsilová, L., Timár, P., Timár, P. et al. Measurement of critical heat flux conditions under vacuum. Chem. Pap. 68, 1767–1773 (2014). https://doi.org/10.2478/s11696-014-0621-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0621-z

Keywords

Navigation