Skip to main content
Log in

Intensive 2-phenylethanol production in a hybrid system combined of a stirred tank reactor and an immersed extraction membrane module

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Bioconversion of l-phenylalanine to 2-phenylethanol using Saccharomyces cerevisiae is connected with the growth of biomass strongly limited by product inhibition. Therefore, fermentation can proceed only at low conversions of l-phenylalanine with very low yield of the desired product, which allows reaching the maximum concentration of 2-phenylethanol, 4 g L−1, in an ordinary batch, fed-batch, or chemostat bioreactor. To minimize capital and operating costs in the bioproduction of chemical specialties where the product inhibits the bioreaction, using a hybrid system based on the application of membrane extraction integrated in the bioreactor to remove the product is a suitable solution. Integration can be done by an external module for membrane extraction or, as a more efficient solution, by an extraction membrane module immersed directly in the bioreactor. Such a hybrid system can be used to remove 2-phenylethanol from the fermentation media and thus to overcome the product inhibition of the biotransformation process. In this paper, a hybrid system consisting of a stirred tank bioreactor (3.5 L) and an immersed extraction hollow fiber membrane module was studied. In the proposed system, the kinetics of 2-phenylethanol extraction from a water solution with and without biomass in the bioreactor to alkanes at different operational conditions was measured. Extraction kinetics was compared with the predictions obtained by a mathematical model. In the hybrid system, two extractive biotransformation experiments were performed and compared with that without product removal. Experimental data were also mathematically predicted with good accuracy between the simulation and the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blažej, M., Annus, J., & Markoš, J. (2004). Comparison of gassing-out and pressure-step dynamic methods for k L a measurement in an airlift reactor with internal loop. Chemical Engineering Research and Design, 82, 1375–1382. DOI: 10.1205/cerd.82.10.1375.46737.

    Article  Google Scholar 

  • Bocquet, S., Gascons Viladomat, F., Muvdi Nova, C., Sanchez, J., Athes, V., & Souchon, I. (2006). Membrane-based solvent extraction of aroma compounds: Choice of configurations of hollow fiber modules based on experiments and simulation. Journal of Membrane Science, 281, 358–368. DOI:10.1016/j.memsci.2006.04.005.

    Article  CAS  Google Scholar 

  • Etschmann, M. M. W., Sell, D., & Schrader, J. (2003). Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnology Letters, 25, 531–536. DOI: 10.1023/a:1022890119847.

    Article  CAS  Google Scholar 

  • Etschmann, M., Sell, D., & Schrader, J. (2005). Production of 2-phenylethanol and 2-phenylethylacetate from l-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnology and Bioengineering, 92, 624–634. DOI:10.1002/bit.20655.

    Article  CAS  Google Scholar 

  • Etschmann, M. M. W., & Schrader, J. (2006). An aqueous-organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Applied Microbiology and Biotechnology, 71, 440–443. DOI: 10.1007/s00253-005-0281-6.

    Article  CAS  Google Scholar 

  • Gabelman, A., & Hwang, S. T. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159, 61–106. DOI: 10.1016/s0376-7388(99)00040-x.

    Article  CAS  Google Scholar 

  • Gawroński, R., & Wrzesińska, B. (2000). Kinetics of solvent extraction in hollow-fiber contactors. Journal of Membrane Science, 168, 213–222. DOI: 10.1016/s0376-7388(99)00317-8.

    Article  Google Scholar 

  • Hua, D. L., & Xu, P. (2011). Recent advances in biotechnological production of 2-phenylethanol. Biotechnology Advances, 29, 654–660. DOI:10.1016/j.biotechadv.2011.05.001.

    Article  CAS  Google Scholar 

  • Chisti, M. Y. (1989). Airlift bioreactors. London, UK: Elsevier.

    Google Scholar 

  • Kertész, R., Šimo, M., & Schlosser, Š. (2005). Membrane-based solvent extraction and stripping of phenylalanine in HF contactors. Journal of Membrane Science, 257, 37–47. DOI:10.1016/j.memsci.2004.12.022.

    Article  Google Scholar 

  • Kubišová, Ľ., Sabolová, E., Schlosser, Š., Marták, J., & Kertész, R. (2002). Membrane based solvent extraction and stripping of a heterocyclic carboxylic acid in hollow fiber contactors. Desalination, 148, 205–211. DOI: 10.1016/s0011-9164(02)00699-9.

    Article  Google Scholar 

  • Lange, H., Taillandier, P., & Riba, J. P. (2001). Effect of high sheer stress on microbial viability. Journal of Chemical Technology and Biotechnology, 76, 501–505. DOI: 10.1002/jctb.401.

    Article  CAS  Google Scholar 

  • Mei, J. F., Min, H., & Lü, Z. M. (2009). Enhanced biotransformation of l-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochemistry, 44, 886–890. DOI:10.1016/j.procbio.2009.04.012.

    Article  CAS  Google Scholar 

  • Mihaľ, M., Markoš, J., & Štefuca, V. (2011). Membrane extraction of 1-phenylethanol from fermentation solution. Chemical Papers, 65, 156–166. DOI: 10.2478/s11696-010-0096-5.

    Article  Google Scholar 

  • Mihaľ, M., Vereš, R., & Markoš, J. (2012a). Investigation of 2-phenylethanol production in fed-batch hybrid bioreactor: Membrane extraction and microfiltration. Separation and Purification Technology, 95, 126–135. DOI: 10.1016/j.seppur.2012.04.030.

    Article  Google Scholar 

  • Mihaľ, M., Vereš, R., Markoš, J., & Štefuca, V. (2012b). Intensification of 2-phenylethanol production in fed-batch hybrid bioreactor: Biotransformations and simulations. Chemical Engineering and Processing: Process Intensification, 57–58, 75–85. DOI:10.1016/j.cep.2012.03.006.

    Google Scholar 

  • Mihaľ, M., Gavin, S. P., Vereš, R., & Markoš, J. (2013). Airlift reactor — membrane extraction hybrid system for aroma production. Chemical Papers, 67, 1485–1494. DOI: 10.2478/s11696-012-0261-0.

    Article  Google Scholar 

  • Serp, D., von Stockar, U., & Marison, I. W. (2003). Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization. Biotechnology and Bioengineering, 82, 103–110. DOI: 10.1002/bit.10545.

    Article  CAS  Google Scholar 

  • Schäfer, M., Höfken, M., & Durst, F. (1997). Detailed LDV measurements for visualization of the fow field within a stirred-tank reactor equipped with a Rushton turbine. Chemical Engineering Research and Design, 75, 729–736. DOI: 10.1205/026387697524399.

    Article  Google Scholar 

  • Stark, D., Münch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2002). Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18, 514–523. DOI: 10.1021/bp020006n.

    Article  CAS  Google Scholar 

  • Stark, D., Zala, D., Münch, T., Sonnleitner, B., Marison, I. W., & von Stockar, U. (2003). Inhibition aspects of the bioconversion of L-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae. Enzyme and Microbial Technology, 32, 212–223. DOI: 10.1016/s0141-0229(02)00237-5.

    Article  CAS  Google Scholar 

  • Wang, H., Dong, Q. F., Guan, A., Meng, C., Shi, X. a., & Guo, Y. H. (2011). Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. Journal of Bioscience and Bioengineering, 112, 26–31. DOI:10.1016/j.jbiosc.2011.03.006.

    Article  CAS  Google Scholar 

  • Wang, Z. W., Wu, Z. C., Mai, S. H., Yang, C. F., Wang, X. H., An, Y., & Zhou, Z. (2008). Research and applications of membrane bioreactors in China: Progress and prospect. Separation and Purification Technology, 62, 249–263. DOI:10.1016/j.seppur.2007.12.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Markoš.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaľ, M., Goncalves, R.F. & Markoš, J. Intensive 2-phenylethanol production in a hybrid system combined of a stirred tank reactor and an immersed extraction membrane module. Chem. Pap. 68, 1656–1666 (2014). https://doi.org/10.2478/s11696-014-0575-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0575-1

Keywords

Navigation