Skip to main content
Log in

Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the paper, simultaneous removal of Al(III) and Cu(II) from dilute aqueous solutions by ion and precipitate flotation methods is investigated. Influence of the pH of the initial solution, the surface active collector concentration and the gas flow rate on the final removal ratio and the course of ion and precipitate flotations is presented. The results show that simultaneous flotations of Al(OH)3 and Cu(OH)2 insoluble species occur allowing to achieve their almost complete removal in the pH range between 7 and 9. An increase of the surface active agent concentration causes a decrease of the final removal ratio as well as of the flotation rate constant. An increase of the gas flow rate results in an increase of ion and precipitate flotation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartkiewicz, B. (2007). Industrial wastewaters treatment. Warsaw, Poland: PWN. (in Polish)

    Google Scholar 

  • Blais J. F., Djedidi, Z., Ben Cheikh, R., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 135–149. DOI: 10.1061/(ASCE)1090-025x(2008)12:3(135).

    Article  CAS  Google Scholar 

  • Charewicz, W. A., Hołowiecka, B. A.,& Walkowiak, W. (1999). Selective flotation of zinc(II) and silver(I) ions from dilute aqueous solutions. Separation Science and Technology, 34, 2447–2460. DOI: 10.1081/ss-100100784.

    Article  CAS  Google Scholar 

  • Crawford, R. J., Harding, I. H.,& Mainwaring, D. E. (1993). Adsorption and coprecipitation of single heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir, 9, 3050–3056. DOI: 10.1021/la00035a051.

    Article  CAS  Google Scholar 

  • Degen, A.,& Kosec, M. (2000). Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society, 20, 667–673. DOI: 10.1016/s0955-2219(99)00203-4.

    Article  CAS  Google Scholar 

  • Ehrampoush, M. H., Salmani, M. H., Ghaneian, M. T., Davoudi, M.,& Fallahzadeh, M. H. (2011). Selectivity in removal of cadmium (II) from mixed metal effluents using ion flotation. World Applied Sciences Journal, 13(1), 52–59.

    CAS  Google Scholar 

  • Filippov, L. O. (2000). Ion flotation. In M. Cooke, & C. F. Poole (Eds.), Encyclopedia of separation science (Level III, pp. 3179–3186). San Diego, CA, USA: Academic Press. DOI: 10.1016/bo-12-226770-2/05811-7.

    Chapter  Google Scholar 

  • Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. DOI:10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  • Ghazy, S. E.,& El-Morsy, S. M. (2008). Precipitate flotation of aluminum and copper. Trends in Applied Sciences Research, 3, 14–24. DOI:10.3923/tasr.2008.14.24.

    Article  CAS  Google Scholar 

  • Grieves, R. B.,& Bhattacharyya, D. (1967). The foam separation of colloidal ferric oxide with an anionic and a cationic surfactant. Journal of the American Oil Chemists’ Society, 44, 498–501. DOI: 10.1007/bf02908546.

    Article  CAS  Google Scholar 

  • Huang, S. D., Tzuoo, J. J., Gau, J. Y., Hsieh, H. S.,& Fann, C. F. (1984). Effect of Al(III) as an activator for adsorbing colloid flotation. Separation Science and Technology, 19, 1061–1072. DOI: 10.1080/01496398408058348.

    Article  Google Scholar 

  • Ibezim-Ezeani, M. U., Okoye, F. A.,& Akaranta, O. (2012). Kinetic studiem on the removal of some metal ions from aqueous solution using modified Orange mesocarp extract. International Journal of Water Resources and Environmental Engineering, 4, 192–200. DOI: 10.5897/IJWREE.11.088.

    CAS  Google Scholar 

  • Jensen, W. B. (2012). The quantification of electronegativity: Some precursors. Journal of Chemical Education, 89, 94–96. DOI:10.1021/ed1011822.

    Article  CAS  Google Scholar 

  • Jurkiewicz, K. (1984). Studies on the separation of cadmium from solutions by foam separation. II. Precipitate flotation of cadmium hydroxide. Separation Science and Technology, 19, 1051–1060. DOI: 10.1080/01496398408058347.

    Article  Google Scholar 

  • Jurkiewicz, K. (2005). Adsorptive bubble separation of zinc and cadmium cations in the presence of ferric and aluminum hydroxides. Journal of Colloid and Interface Science, 286, 559–563. DOI:10.1016/j.jcis.2005.01.061.

    Article  CAS  Google Scholar 

  • Kawalec-Pietrenko, B.,& Selecki, A. (1984). Investigations of kinetics of removal of trivalent chromium salts from aqueous solutions using ion and precipitate flotation methods. Separation Science and Technology, 19, 1025–1038. DOI: 10.1080/01496398408058345.

    Article  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H.,& Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98. DOI:10.1016/j.cej.2006.01.015.

    Article  CAS  Google Scholar 

  • Leja, J. (1982). Surface chemistry of froth flotation. New York, NY, USA: Plenum Press.

    Google Scholar 

  • Marczenko, Z., & Balcerzak, M. (1998). Copper. In Spectrophotometrical methods in inorganic analysis (pp. 284–296). Warsaw, Poland: PWN. (in Polish)

    Google Scholar 

  • Medina, B. Y., Torem, M. L.,& de Mesquita, L. M. S. (2005). On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Minerals Engineering, 18, 225–231. DOI:10.1016/j.mineng.2004.08.018.

    Article  CAS  Google Scholar 

  • Mochizuki, T.,& Kuroda, R. (1982). Rapid continuous determination of aluminum in copper-base alloys by flow-injection spectrophotometry. Fresenius’ Zeitschrift für Analytische Chemie, 311, 11–15. DOI: 10.1007/bf00493492.

    Article  CAS  Google Scholar 

  • Parks, G. A. (1965). The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chemical Reviews, 65(2), 177–198. DOI: 10.1021/cr60234a002.

    Article  CAS  Google Scholar 

  • Puigdomenech, I. (2010). MEDUSA [computer software]. Stockholm, Sweden: Royal Institute of Technology.

    Google Scholar 

  • Reyes, M., Patino, F., Escudero, R., Pérez, M., Flores, M. U.,& Reyes, I. A. (2012). Kinetics and hydrodynamics of silver ion flotation. Journal of the Mexican Chemical Society, 56(4), 408–416.

    Google Scholar 

  • Rubin, A. J., Johnson, J. D.,& Lamb, J. C., III (1966). Comparison of variables in ion and precipitate flotation. Industrial & Engineering Chemistry Process Design and Developments, 5, 368–375. DOI: 10.1021/i260020a004.

    Article  CAS  Google Scholar 

  • Rubin, A. J.,& Johnson, J. D. (1967). Effect of pH on ion and precipitate flotation systems. Analytical Chemistry, 39, 298–302. DOI: 10.1021/ac60247a009.

    Article  CAS  Google Scholar 

  • Shakir, K.,& Samy, S. (1979). Kinetic studies on the foam separation of thorium (IV) with sodium lauryl sulphate. Colloid and Polymer Science, 257, 420–426. DOI: 10.1007/bf01521579.

    Article  CAS  Google Scholar 

  • Stoica, L., Oproiu, G. C., Cosmeleata, R.,& Dinculescu, M. (2003). Kinetics of Cu2+ separation by flotation. Separation Science and Technology, 38, 613–632.DOI: 10.1081/ss-120016654.

    Article  CAS  Google Scholar 

  • Uribe-Salas, A., Pérez-Garibay, R., Nava-Alonso, F.,& Castro-Román, M. (2005). A kinetic model for Pb2+ flotation with sodium dodecylsulfate in a batch column. Separation Science and Technology, 40, 3225–3237. DOI: 10.1080/01496390500385426.

    Article  CAS  Google Scholar 

  • Walkowiak, W. (1991). Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations. Separation Science and Technology, 26, 559–568. DOI: 10.1080/01496499108050490.

    Article  CAS  Google Scholar 

  • Wömmel, S.,& Calmano, W. (1992). Studies on separation of heavy metals from acidic solutions by foam fractionation with respect to an application on acidic soil extracts. Acta Hydrochimica et Hydrobiologica, 20, 265–268.

    Google Scholar 

  • Zhang, J., Jing, Y. J., Wu, Z. L.,& Li, Q. (2009). Removal of trace Cu2+ from aqueous solution by foam fractionation. Desalination, 249, 503–506. DOI:10.1016/j.desal.2008.07.028.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I.,& Matis, K. A. (1987). Ion flotation in environmental technology. Chemosphere, 16, 623–631. DOI: 10.1016/0045-6535(87)90275-x.

    Article  CAS  Google Scholar 

  • Zouboulis, A. I. (1995). Silver recovery from aqueous streams using ion flotation. Minerals Engineering, 8, 1477–1488. DOI: 10.1016/0892-6875(95)00112-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożenna Kawalec-Pietrenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawalec-Pietrenko, B., Rybarczyk, P. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems. Chem. Pap. 68, 890–898 (2014). https://doi.org/10.2478/s11696-014-0534-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0534-x

Keywords

Navigation