Skip to main content
Log in

Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Amongst various carbon sources, xylan was found to be the sole inducer of endoxylanase production by Penicillium janthinellum MTCC 10889 in submerged cultivation. Endoxylanase synthesis by a xylan induced culture was initially repressed after a simultaneous addition of xylose, probably by the inducer exclusion mechanism, but it was resumed and achieved its highest level at a much later stage of growth (at 120 h). Xylose added after 30 h of growth cannot exert its full repressive effect. Although glucose was proved to be a more potent repressor than xylose, supplementation of salicin, an alcoholic β-glycoside containing d-glucose, with pure xylan resulted in an about 3.22 fold increase in the enzyme synthesis at 72 h followed by constant high production of the enzyme at least until the 144th h of growth. Inducing capacity of salicin in a xylan induced culture was significantly reduced when it was added after 30 h of growth. Addition of salicin and xylan help to partially overcome the repressive effect of xylose and glucose. Failure of salicin in recovering the endoxylanase synthesis in actinomycin D and cyclohexamide inhibited the xylan induced culture indicating that salicin cannot initiate the de novo synthesis of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aro, N., Pakula, T., & Penttilä, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739. DOI: 10.1016/j.femsre.2004.11.006.

    Article  CAS  Google Scholar 

  • Benedetti, A. C. E. P., da Costa, E. D., Aragon, C. C., dos Santos, A. F., Goulart, A. J., Attili-Angelis, D., & Monti, R. (2013). Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 25–31.

    CAS  Google Scholar 

  • Biely, P., & Petráková, E. (1984). Novel inducers of the xylandegrading enzyme system of Cryptococcus albidus. Journal of Bacteriology, 160, 408–412.

    CAS  Google Scholar 

  • Biswas, S. R., Mishra, A. K., & Nanda, G. (1988). Induction of xylanase in Aspergillus ochraceus. Folia Microbiologia, 33, 355–359. DOI: 10.1007/bf02925844.

    Article  CAS  Google Scholar 

  • Calero-Nieto, F., Di Pietro, A., Roncero, M. I., & Hera, C. (2007). Role of the transcriptional activator XlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Molecular Plant-Microbe Interactions, 20, 977–985.

    Article  CAS  Google Scholar 

  • Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 123, 413–433. DOI: 10.1016/j.jbiotec.2005.12.036.

    Article  Google Scholar 

  • Desai, T. A., & Rao, C. V. (2010). Regulation of arabinose and xylose metabolism in Escherichia coli. Applied and Environmental Microbiology, 76, 1524–1532. DOI: 10.1128/aem.01970-09.

    Article  CAS  Google Scholar 

  • de Vries, R. P, & Visser, J. (2001). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65, 497–522. DOI: 10.1128/mmbr.65.4.497-522.2001.

    Article  Google Scholar 

  • Dhiman, S. S., Sharma, J., & Battan, B. (2008). Industrial applications and future prospects of microbial xylanases: A review. BioResources, 3, 1377–1402.

    Google Scholar 

  • Dodd, D., & Cann, I. K. O. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 1, 2–17. DOI: 10.1111/j.1757-1707.2009.01004.x.

    Article  CAS  Google Scholar 

  • Emami, K., Nagy, T., Fontes, C. M. G. A., Ferreira, L. M. A., & Gilbert, H. J. (2002). Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11. Journal of Bacteriology, 184, 4124–4133. DOI: 10.1128/jb.184.15.4124-4133.2002.

    Article  CAS  Google Scholar 

  • Goyal, M., Kalra, K. L., Sareen, V. K., & Soni, G. (2008). Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Brazilian Journal of Microbiology, 39, 535–541. DOI: 10.1590/s1517-83822008000300025.

    Article  Google Scholar 

  • Herold, S., Bischof, R., Metz, B., Seiboth, B., & Kubicek, C. P. (2013). Xylanase gene transcription in Trichoderma reesei is triggered by different inducers representing different hemicellulosic pentose polymers. Eukaryotic Cell, 12, 390–398. DOI: 10.1128/ec.00182-12.

    Article  CAS  Google Scholar 

  • Jørgensen, H., Morkeberg, A., Krogh, K. B. R., & Olsson, L. (2004). Growth and enzyme production by three Penicillium species on monosaccharides. Journal of Biotechnology, 109, 295–299. DOI: 10.1016/j.jbiotec.2003.12.011.

    Article  Google Scholar 

  • Joshi, C., & Khare, S. K. (2012). Induction of xylanase in thermophilic fungi Scytalidium thermophilum and Sporotrichum thermophile. Brazilian Archives of Biology and Technology, 55, 21–27. DOI: 10.1590/s1516-89132012000100003.

    Article  CAS  Google Scholar 

  • Krátký, Z., & Biely, P. (1980). Inducible β-xyloside permease as a constituent of the xylan-degrading enzyme system of the yeast Cryptococcus albidus. European Journal of Biochemistry, 112, 367–373. DOI: 10.1111/j.1432-1033.1980.tb07214.x.

    Article  Google Scholar 

  • Khucharoenphaisan, K., Tokuyama, S., Ratanakhanokchai, K., & Kitpreechavanich, V. (2010). Induction and repression of β-xylanase of Thermomyces lanuginosus TISTR 3465. Pakistan Journal of Biological Sciences, 13, 209–215. DOI: 10.3923/pjbs.2010.209.215.

    Article  CAS  Google Scholar 

  • Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456. DOI: 10.1111/j.1574-6976.1999.tb00407.x.

    Article  CAS  Google Scholar 

  • Kundu, A., & Ray, R. R. (2011). Agrowaste utilization and production of extra cellular endoxylanase by Penicillium janthinellum MTCC 10889 in solid state fermentation. International Journal of Current Research, 3, 120–124.

    Google Scholar 

  • Mach-Aigner, A. R., Gudynaite-Savitch, L., & Mach, R. L. (2011). l-Arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Applied and Environmental Microbiology, 77, 5988–5994. DOI: 10.1128/aem.05427-11.

    Article  CAS  Google Scholar 

  • Mandal, A., Kar, S., Das Mahapatra, P. K., Maity, C., Pati, B. R., & Mondal, K. C. (2012). Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Applied Biochemistry and Biotechnology, 167, 1052–1060. DOI: 10.1007/s12010-011-9523-5.

    Article  CAS  Google Scholar 

  • Marui, J., Tanaka, A., Mimura, S., de Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., & Tsukagoshi, N. (2002). A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 35, 157–169. DOI: 10.1006/fgbi.2001.1321.

    Article  CAS  Google Scholar 

  • Miyazaki, K., Hirase, T., Kojima, Y., & Flint, H. J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology, 151, 4121–4125. DOI: 10.1099/mic.0.28270-0.

    Article  CAS  Google Scholar 

  • Michelin, M., Polizeli, M. L. T. M., Ruzene, D. S., Silva, D. P., Vicente, A. A., Jorge, J. A., Terenzi, H. F., & Teixeira, J. A. (2011). Xylanase and β-xylosidase production by Aspergillus ochraceus: New perspectives for the application of wheat straw autohydrolysis liquor. Applied Biochemistry and Biotechnology, 166, 336–347. DOI: 10.1007/s12010-011-9428-3.

    Article  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Pal, A., & Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology, 101, 7563–7569. DOI: 10.1016/j.biortech.2010.04.033.

    Article  CAS  Google Scholar 

  • Puspaningsih, N. N. T., Suwanto, A., Suhartono, M. T., Achmadi, S. S., Yogiara, & Kimura, T. (2008). Cloning, sequencing and characterization of the xylan degrading enzymes from Geobacillus thermoleovorans IT-08. Jurnal ILMU DASAR, 9, 177–187.

    Google Scholar 

  • Ren, C., Chen, T., Zhang, J., Liang, L., & Lin, Z. (2009). An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microbial Cell Factories, 8, 66. DOI: 10.1186/1475-2859-8-66.

    Article  Google Scholar 

  • Seiboth, B., Herold, S., & Kubicek, C. P. (2012). Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. In X. Wang, J. Chen, & P. Quinn (Eds.), Reprogramming microbial metabolic pathways (Series: Subcellular biochemistry, Vol. 64, Chapter 18, pp 367–390). Dordrecht, Germany: Springer. 10.1007/978-94-007-5055-5 18.

    Google Scholar 

  • Shulami, S., Raz-Pasteur, A., Tabachnikov, O., Gilead-Gropper, S., Shner, I., & Shoham, Y. (2011). The l-arabinan utilization system of Geobacillus stearothermophilus. Journal of Bacteriology, 193, 2838–2850. DOI: 10.1128/jb.00222-11.

    Article  CAS  Google Scholar 

  • Sun, J., Tian, C., Diamond, S., & Glass, N. L. (2012). Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryotic Cell, 11, 482–493. DOI: 10.1128/ec.05327-11.

    Article  CAS  Google Scholar 

  • van Peij, N. N. M. E., Visser, J., & de Graaff, L. H. (1998). Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Molecular Microbiology, 27, 131–142. DOI: 10.1046/j.1365-2958.1998.00666.x.

    Article  Google Scholar 

  • Zadra, I., Abt, B., Parson, W., & Haas, H. (2000). xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Applied and Environmental Microbiology, 66, 4810–4816. DOI: 10.1128/aem.66.11.4810-4816.2000.

    Article  CAS  Google Scholar 

  • Zhang, J., Moilanen, U., Tang, M., & Viikari, L. (2013). The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin. Biotechnology for Biofuels, 6, 18. DOI: 10.1186/1754-6834-6-18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Rani Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, A., Ray, R.R. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889. Chem. Pap. 68, 451–456 (2014). https://doi.org/10.2478/s11696-013-0478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0478-6

Keywords

Navigation