Skip to main content
Log in

Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The synthesis of well-aggregated carbon nanotubes in the form of bundles was achieved by the catalytic reduction of 1,2-dichlorobenzene by a solvothermal approach. The use of 1,2-dichlorobenzene as a carbon source yielded a comparably good percentage of carbon nanotubes in the range of 60–70 %, at a low reaction temperature of 200°C. The products obtained were analysed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. The X-ray diffraction studies implied the presence of pure, crystalline, and well-ordered carbon nanotubes. The scanning electron and transmission electron microscopic images revealed the surface morphology, dimensions and the bundled form of the tubes. These micrographs showed the presence of multi-walled carbon nanotubes with an outer diameter of 30–55 nm, inner diameter of 15–30 nm, and lengths of several hundreds of nanometers. Brunauer-Emmett-Teller-based N2 gas adsorption studies were performed to determine the surface area and pore volume of the carbon nanotubes. These carbon nanotubes exhibit a better surface area of 385.30 m2 g−1. In addition, the effects of heating temperature, heating time, amount of catalyst and amount of carbon source on the product yield were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baughman, R. H., Cui, C. X., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., & Kertesz, M. (1999). Carbon nanotube actuators. Science, 284, 1340–1344. DOI: 10.1126/science.284.5418.1340.

    Article  CAS  Google Scholar 

  • Benito, A. M., Maniette, Y., Muñoz, E., & Martínez, M. T. (1998). Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon, 36, 681–683. DOI: 10.1016/s0008-6223(98)00039-6.

    Article  CAS  Google Scholar 

  • Bera, D., Johnston, G., Heinrich, H., & Seal, S. (2006). A parametric study on the synthesis of carbon nanotubes through arc-discharge in water. Nanotechnology, 17, 1722–1730. DOI: 10.1088/0957-4484/17/6/030.

    Article  CAS  Google Scholar 

  • Bethune, D. S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607. DOI: 10.1038/363605a0.

    Article  CAS  Google Scholar 

  • Branca, C., Frusteri, F., Magazu, V., & Mangione, A. (2004). Characterization of carbon nanotubes by TEM and infrared spectroscopy. The Journal of Physical Chemistry B, 108, 3469–3473. DOI: 10.1021/jp0372183.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319. DOI: 10.1021/ja01269a023.

    Article  CAS  Google Scholar 

  • Cao, A. Y., Xu, C. L., Liang, J., Wu, D. H., & Wei, B. Q. (2001). X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chemical Physics Letters, 344, 13–17. DOI: 10.1016/s0009-2614(01)00671-6.

    Article  CAS  Google Scholar 

  • Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A., & Kalenczuk, R. J. (2008). Characterization of carbon nanotubes by Raman spectroscopy. Materials Science-Poland, 26, 433–441.

    CAS  Google Scholar 

  • Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 260, 471–475. DOI: 10.1016/0009-2614(96)00862-7.

    Article  CAS  Google Scholar 

  • Herreyre, S., & Gadelle, P. (1995). Effect of hydrogen on the morphology of carbon deposited from the catalytic disproportionation of CO. Carbon, 33, 234–237. DOI: 10.1016/0008-6223(95)92803-m.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Jian, S. R., Chen, Y. T., Wang, C. F., Wen, H. C., Chiu, W. M., Yang, C. S. (2008). The influences of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes by microwave plasma chemical vapor deposition. Nanoscale Research Letters, 3, 230–235. DOI: 10.1007/s11671-008-9141-5.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wu, Y., Zhang, S. Y., Xu, C. Y., Yu, W. C., Xie, Y., & Qian, Y. T. (2000). A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate tem perature. Journal of the American Chemical Society, 122, 12383–12384. DOI: 10.1021/ja002387b.

    Article  CAS  Google Scholar 

  • Karmakar, S., Sharma, S. M., & Sood, A. K. (2005). Studies on high pressure behavior of carbon nanotubes: X-ray diffraction measurements using synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section B, 238, 281–284. DOI: 10.1016/j.nimb.2005.06.064.

    Article  CAS  Google Scholar 

  • Kim, P., & Lieber, C. M. (1999). Nanotube nanotweezers. Science, 286, 2148–2150. DOI: 10.1126/science.286.5447.2148.

    Article  CAS  Google Scholar 

  • Kim, H. H., & Kim, H. J. (2007). New DC arc discharge synthesis method for carbon nanotubes using xylene ferrocene as floating catalyst. Japanese Journal of Applied Physics, 46, 1818–1820. DOI: 10.1143/jjap.46.1818.

    Article  CAS  Google Scholar 

  • Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., & Dai, H. J. (2000). Nanotube molecular wires as chemical sensors. Science, 287, 622–625. DOI: 10.1126/science.287.5453.622.

    Article  CAS  Google Scholar 

  • Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., & Dresselhaus, M. S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127–1129. DOI: 10.1126/science.286.5442.1127.

    Article  CAS  Google Scholar 

  • Liu, J. W., Shao, M. W., Chen, X. Y., Yu, W. C., Liu, X. M., & Qian, Y. T. (2003). Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. Journal of the American Chemical Society, 125, 8088–8089. DOI: 10.1021/ja035763b.

    Article  CAS  Google Scholar 

  • Mahanandia, P., Vishwakarma, P. N., Nanda, K. K., Prasad, V., Barai, K., Mondal, A. K., Sarangi, S., Dey, G. K., Subramanyam, S. V. (2008). Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Communications, 145, 143–148. DOI: 10.1016/j.ssc.2007.10.020.

    Article  CAS  Google Scholar 

  • Manafi, S. A., Amin, M. H., Rahimipour, M. R., Salahi, E., & Kazemzadeh, A. (2009). High-yield synthesis of multiwalled carbon nanotube by mechanothermal method. Nanoscale Research Letters, 4, 296–302. DOI: 10.1007/s11671-008-9240-3.

    Article  CAS  Google Scholar 

  • Rodriguez, N. M. (1993). A review of catalytically grown carbon nanofibers. Journal of Materials Research, 8, 3233–3250. DOI: 10.1557/jmr.1993.3233.

    Article  CAS  Google Scholar 

  • Scott, C. D., Arepalli, S., Nikolaev, P., & Smalley, R. E. (2001). Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A, 72, 573–580. DOI: 10.1007/s003390100761.

    Article  CAS  Google Scholar 

  • Shim, M., Javey, A., Kam, N. W. S., & Dai, H. (2001). Polymer functionalization for air-stable N-type carbon nanotube fieldeffect transistors. Journal of the American Chemical Society, 123, 11512–11513. DOI: 10.1021/ja0169670.

    Article  CAS  Google Scholar 

  • Tsang, S. C., Harris, P. J. F., & Green, M. L. H. (1993). Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 362, 520–522. DOI: 10.1038/362520a0.

    Article  CAS  Google Scholar 

  • Wang, X. J., Lu, J., Xie, Y., Du, G., Guo, Q. X., & Zhang, S. Y. (2002). A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature. Journal of Physical Chemistry B, 106, 933–937. DOI: 10.1021/jp0130719.

    Article  CAS  Google Scholar 

  • Wang, W. Z., Kunwar, S., Huang, J. Y., Wang, D. Z., & Ren, Z. F. (2005). Low temperature solvothermal synthesis of multiwall carbon nanotubes. Nanotechnology, 16, 21–23. DOI: 10.1088/0957-4484/16/1/005.

    Article  CAS  Google Scholar 

  • Wu, H. C., Chang, X. L, Liu, L., Zhao, F., & Zhao, Y. L. (2010). Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 20, 1036–1052. DOI: 10.1039/b911099m.

    Article  CAS  Google Scholar 

  • Yuan, D. S., Liu, Y. L., Xiao, Y., & Chen, L. Q. (2008). Preparation and characterization of Z-shaped carbon nanotubes via decomposing magnesium acetate. Materials Chemistry and Physics, 112, 27–30. DOI: 10.1016/j.matchemphys.2008.04.040.

    Article  CAS  Google Scholar 

  • Zdrojek, M., Gebicki, W., Jastrzebski, C., Melin, T., & Huczko, A. (2004). Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solide State Phenomena, 99, 265–268. DOI: 10.4028/www.scientific.net/ssp.99-100.265.

    Article  Google Scholar 

  • Zubizarreta, L., Arenillas, A., & Pis, J. J. (2009). Carbon materials for H2 storage. International Journal of Hydrogen Energy, 34, 4575–4581. DOI: 10.1016/j.ijhydene.2008.07.112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gantigaiah Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurthy, G., Agarwal, S. Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene. Chem. Pap. 67, 1396–1403 (2013). https://doi.org/10.2478/s11696-013-0397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0397-6

Keywords

Navigation