Skip to main content
Log in

Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The polyaniline-PbO composites of various mass fractions were prepared by in situ polymerisation. The prepared samples were characterised by FTIR, and the dominant peaks confirmed the formation of polyaniline-PbO composites. The SEM study shows a granular agglomerated morphology, and increases with an increase in the lead oxide mass % in polyaniline. Direct current (DC) conductivity (σ DC) was studied as a function of temperature (T). From these studies, it was found that conductivity increased at higher temperatures due to the polarons hopping from one localised state to another. DSC studies reveal, the decrease in peak temperature from 273°C (pure PANI) to 169.2°C, 193.5°C, 218.4°C, 235.2°C, and 224.2°C, respectively for the various mass fractions (10 %, 30 %, 20 %, 40 %, and 50 %) of polyaniline-PbO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdiryim, T., Ubul, A., Jamal, R., Tian, Y., Awut, T., & Nurulla, I. (2012). Solid-state synthesis and characterization of polyaniline/nano-TiO2 composite. Journal of Applied Polymer Science, 126, 697–705. DOI: 10.1002/app.36857.

    Article  CAS  Google Scholar 

  • Anilkumar, K. R., Parveen, A., Badiger, G. R., & Ambika Prasad, M. V. N. (2009). Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Physica B: Condensed Matter, 404, 1664–1667. DOI: 10.1016/j.physb.2009.01.046.

    Article  CAS  Google Scholar 

  • Bae, W. J., Kim, K. H., Jo, W. H., & Park, Y. H. (2004) Exfoliated nanocomposite from polyaniline graft copolymer/clay. Macromolecules, 37, 9850–9854. DOI: 10.1021/ma048829b.

    Article  CAS  Google Scholar 

  • Chakraborty, G., Gupta, K., Meikap, A. K., Babu, R., & Blau, W. J. (2011). Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. Journal of Applied Physics, 109, 033707. DOI: 10.1063/1.3544204.

    Article  Google Scholar 

  • Chu, C. W., Chen, F., Shulman, J., Tsui, S., Xue, Y. Y., Wen, W., & Sheng, P. (2005). A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. In I. Bozovic, & D. Pavuna (Eds.), Strongly correlated electron materials: Physics and nanoengineering (Proceedings of SPIE, Vol. 5932, pp. 139–148). DOI: 10.1117/12.626267.

  • Devi, P. I., & Ramachandran, K. (2011). Dielectric studies on hybridised PVDF-ZnO nanocomposites. Journal of Experimental Nanoscience, 6, 281–293. DOI: 10.1080/17458080.2010.497947.

    Article  CAS  Google Scholar 

  • Javadi, H. H. S., Cromack, K. R., MacDiarmid, A. G., & Epstein, A. J. (1989). Microwave transport in the emeraldine form of polyaniline. Physical Review B, 39, 3579–3584. DOI: 10.1103/PhysRevB.39.3579.

    Article  CAS  Google Scholar 

  • Jia, W., Segal, E., Kornemandel, D., Lamhot, Y., Narkis, M., & Siegmann, A. (2002). Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization. Synthetic Metals, 128, 115–120. DOI: 10.1016/s0379-6779(01)00672-5.

    Article  CAS  Google Scholar 

  • Kerr, T. A., Wu, H., & Nazar, L. F. (1996). Concurrent polymerization and insertion of aniline in molybdenum trioxide: Formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chemistry of Materials, 8, 2005–2015. DOI: 10.1021/cm960071q.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kim, K. H., Huh, J., & Jo, W. H. (2007). Synthesis of thermally stable organosilicate for exfoliated poly(ethylene terephthalate) nanocomposite with superior tensile properties. Macromolecular Research, 15, 178–184. DOI: 10.1007/bf03218771.

    Article  CAS  Google Scholar 

  • Li, X. G., Li, A., & Huang, M. R. (2008). Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity. Chemistry — A European Journal, 14, 10309–10317. DOI: 10.1002/chem.200801025.

    Article  CAS  Google Scholar 

  • Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly (anilineco-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000 506.

    Article  CAS  Google Scholar 

  • Li, X. G., Feng, H., Huang, M. R., Gu, G. L., & Moloney, M. G. (2012). Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. Analytical Chemistry, 84, 134–140. DOI: 10.1021/ac2028886.

    Article  CAS  Google Scholar 

  • Parveen, A., Anil Kumar, K., Revanasidappa, M., Ekhilikar, S., & Ambika Prasad, M. V. N. (2008). Dielectric spectroscopy of PANI-CaTiO3 composites. Ferroelectrics, 377, 63–74. DOI: 10.1080/00150190802523594.

    Article  CAS  Google Scholar 

  • Patil, R., Roy, A. S., Anilkumar, K. R., Ambika Prasad, M. V. N., & Ekhelikar, S. (2011). Electrical conductivity of polyaniline/NiZnO3 composites: A solid state electrolyte. Ferroelectric, 423, 77–85. DOI: 10.1080/00150193.2011.620836.

    Article  CAS  Google Scholar 

  • Ramamurthy, P. C., Harrell, W. R., Gregory, R. V., Sadanadan, B., & Rao, A. M. (2004). Polyaniline/carbon nanotube composite Schottky contacts. Polymer Engineering & Science, 44, 28–33. DOI: 10.1002/pen.20002.

    Article  CAS  Google Scholar 

  • Ramamurthy, P. C., Mallya, A. N., Joseph, A., Harrell, W. R., & Gregory, R. V. (2012). Synthesis and characterization of high molecular weight polyaniline for organic electronic applications. Polymer Engineering & Science, 52, 1821–1830. DOI: 10.1002/pen.23096.

    Article  CAS  Google Scholar 

  • Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011a). Core-shell method of synthesis, characterizations, and ac conductivity studies of polyaniline/n-TiO2 composites. Journal of Applied Polymer Science, 121, 676–680. DOI: 10.1002/app.33730.

    Article  Google Scholar 

  • Roy, A. S., Anilkumar, K. R., & Ambika Prasad, M. V. N. (2011b). Impedance spectroscopic studies on nanometric polyaniline/CdO composites. Ferroelectrics, 413, 279–290. DOI: 10.1080/00150193.2011.531190.

    Article  CAS  Google Scholar 

  • Roy, A. S., Anilkumar, K. R., Sasikala, M., Machappa, T., & Prasad, M. V. N. A. (2011c). Sensitivity enhancement for LPG detection by employing cadmium oxide doped in nanocrystalline polyaniline. Sensor Letters, 9, 1342–1348. DOI: 10.1166/sl.2011.1679.

    Article  CAS  Google Scholar 

  • Somani, P. R., Marimuthu, R., Mulik, U. P., Sainkar, S. R., & Amalnerkar, D. P. (1999). High piezoresistivity and its origin in conducting polyaniline/TiO2 composites. Synthetic Metals, 106, 45–52. DOI: 10.1016/s0379-6779(99)00081-8.

    Article  CAS  Google Scholar 

  • Su, S. J., & Kuramoto, N. (2000). Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals, 114, 147–153. DOI: 10.1016/s0379-6779(00)00238-1.

    Article  CAS  Google Scholar 

  • Tunç, T., Uslu, H., & Altındal, S. (2011). Preparation and dielectric properties of polyvinyl alcohol (Co, Zn acetate) fiber/n-Si and polyvinyl alcohol (Ni, Zn acetate)/n-Si Schottky diodes. Fibers and Polymers, 12, 886–892. DOI: 10.1007/s12221-011-0886-6.

    Article  Google Scholar 

  • Wang, S., Tan, Z., Li, Y., Sun, L., & Zhang, T. (2006). Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochimica Acta, 441, 191–194. DOI: 10.1016/j.tca.2005.05.020.

    Article  CAS  Google Scholar 

  • Wu, C. G., Degroot, D. C., Marcy, H. O., Schindler, J. L., Kannewurf, C. R., Liu, Y. J., Hirpo, W., & Kanatzidis, M. G. (1996). Redox intercalative polymerization of aniline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chemistry of Materials, 8, 1992–2204. DOI: 10.1021/cm9600236.

    CAS  Google Scholar 

  • Zhang, F. M., Chang, J., & Eberhard, B. (2010). Dissolution of poly(vinyl alcohol)-modified carbon nanotubes in a buffer solution. New Carbon Materials, 25, 241–247. DOI: 10.1016/s1872-5805(09)60030-5.

    Article  Google Scholar 

  • Zuo, F., Angelopoules, M., MacDiarmid, A. G., & Epstein, A. J. (1989). AC conductivity of emeraldine polymer. Physical Review B, 39, 3570–3578. DOI: 10.1103/PhysRevB.39.3570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashis S. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parveen, A., Dashpande, R., Ahmed, S. et al. Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites. Chem. Pap. 67, 350–356 (2013). https://doi.org/10.2478/s11696-012-0270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0270-z

Keywords

Navigation