Skip to main content

Advertisement

Log in

Preparation and properties of cementitious composites for geothermal applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Three fiber-reinforced cement composites were prepared and cured in an autoclave for up to 168 h at 2 MPa of steam pressure in order to investigate the effect of hydrothermal curing on the alteration of pore structure, density, and formation and stability of hydrated products with time. Compressive strength was reviewed in connection with sample porosity. It was found that the time of autoclaving plays a crucial role in objective assessment of the durability of composites as potential candidates for geothermal applications. A mercury intrusion porosimeter Quantachrome Poremaster 60GT was used for the estimation of the pore structure parameters of composites. The thermal analysis method was used to identify different temperature ranges of cured samples’ thermal decomposition and to characterize the nature of hydrated products. Two kinds of products were formed. The first group consisted of calcium-silicate-hydrate (C-S-H), calcium-silicate-aluminate-hydrate (C-S-A-H), calcium-aluminate-hydrate (C-A-H), and calcium-carbonate (C-C) as a product of carbonation. The second group are chemically bond products, e.g. hydroxyapatite (Ca5(PO4)3(OH)) and gibbsite (Al(OH)3). These two hydroceramic products formed under hydrothermal conditions act also as binders and they can be useful as geothermal cement binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aligizaki, K. K. (2006). Pore structure of cement-based materials: testing, interpretation and requirements. New York, NY, USA: Taylor & Francis.

    Google Scholar 

  • Ashraf, M., Naeem Khan, A., Qasair, A., Mirza, J., Goyal, A., & Anwar, A. M. (2009). Physico-chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Construction and Building Materials, 23, 2207–2213. DOI: 10.1016/j.conbuildmat.2008.12.008.

    Article  Google Scholar 

  • Bägeľ, Ľ., & Palou, M. (2010). Cement composites under hydrothermal load. Effect of prolonged autoclaving on the pore structure alterations. Building Research Journal, 58, 139–156.

    Google Scholar 

  • Bägeľ, Ľ., & Živica, V. (1997). Relationship between pore structure and permeability of hardened cement mortars: On the choice of effective pore structure parameter. Cement and Concrete Research, 27, 1225–1235. DOI: 10.1016/s0008-8846(97)00111-7.

    Article  Google Scholar 

  • Berndt, M. L., & Philippacopoulos, A. J. (2002). Incorporation of fibers in geothermal well cements. Geothermics, 31, 643–656. DOI: 10.1016/s0375-6505(02)00028-7.

    Article  CAS  Google Scholar 

  • Collepardi, M., Monosi, S., & Piccioli, P. (1995). The influence of pozzolanic materials on the mechanical stability of aluminous cement. Cement and Concrete Research, 25, 961–968. DOI: 10.1016/0008-8846(95)00091-p.

    Article  CAS  Google Scholar 

  • Day, R. L., & Marsh, B. K. (1988). Measurement of porosity in blended cement pastes. Cement and Concrete Research, 18, 63–73. DOI: 10.1016/0008-8846(88)90122-6.

    Article  CAS  Google Scholar 

  • Drábik, M., Gáliková, Ľ., Balkovic, S., & Slade, R. C. T. (2007). Potential of Portland cements for MDF materials. Journal of Physics and Chemistry of Solids, 68, 1057–1061. DOI: 10.1016/j.jpcs.2007.03.006.

    Article  Google Scholar 

  • Janotka, I., Krajči, Ľ., Rayb, A., & Mojumdar, S. C. (2003). The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with Portland cement. Cement and Concrete Research, 33, 489–497. DOI:10.1016/s0008-8846(02)00994-8.

    Article  CAS  Google Scholar 

  • Jupe, A. C., Wilkinson, A. P., Luke, K., & Funkhouser, G. P. (2008). Class H cement hydration at 180°C and high pressure in the presence of added silica. Cement and Concrete Research, 38, 660–666. DOI: 10.1016/j.cemconres.2007.12.004.

    Article  CAS  Google Scholar 

  • Kalousek, G. L. (1979). Development of cement for geothermal wells. Upton, NY, USA: Brookhaven National Laboratory. (BNL Report 51024 UC 66-D)

    Book  Google Scholar 

  • Kukacka, L. E., & Sugama, T. (1994). Lightweight CO 2-resistant cements for geothermal well completions. Upton, NY, USA: Brookhaven National Laboratory. (BNL Report60326)

    Google Scholar 

  • Kula, T. M., Meiser, M. D., & Tressler, R. E. (1980). Curing temperature and humidity effects on the strength of an aluminous cement. Cement and Concrete Research, 10, 491–497. DOI: 10.1016/0008-8846(80)90093-9.

    Article  CAS  Google Scholar 

  • Le Saout, G., Lécolier, E., Rivereau, A., & Zanni, H. (2006). Chemical structure of cement aged at normal and elevated temperatures and pressures: Part I. Class G oilwell cement. Cement and Concrete Research, 36, 71–78. DOI:10.1016/j.cemconres.2004.09.018.

    Article  Google Scholar 

  • Luke, K., & Taylor, H. F. W. (1984). Equilibria and nonequilibria in the formation of xonotlite and truscottite. Cement and Concrete Research, 14, 657–662. DOI: 10.1016/0008-8846(84)90028-0.

    Article  CAS  Google Scholar 

  • Ma, W., & Brown, P. W. (1992). Mechanical behaviour and microstructural development in phosphate modified high alumina cement. Cement and Concrete Research, 22, 1192–1200. DOI: 10.1016/0008-8846(92)90048-z.

    Article  CAS  Google Scholar 

  • Nelson, E. B., Eilers, L. H., & Kalousek, G. L. (1981). Formation and behavior of calcium silicate hydrates in geothermal environment. Cement and Concrete Research, 11, 371–381. DOI: 10.1016/0008-8846(81)90109-5.

    Article  CAS  Google Scholar 

  • Nilforoushan, M. R., & Talebiaan, N. (2007). The hydration products of a refractory calcium aluminate cement at low temperatures. Iranian Journal of Chemistry & Chemical Engineering-International, 26, 71–76.

    CAS  Google Scholar 

  • Palou, M. T., Živica, V., & Kuliffayová, M. (2010). Thermal and microstructure analysis of fibre reinforced binder composites cured in autoclave. Building Research Journal, 58, 157–173.

    Google Scholar 

  • Sugama, T. (2006). Advanced cements for geothermal wells. Upton, NY, USA: Brookhaven National Laboratory. (BNL-77901-2007-IR)

    Google Scholar 

  • Sugama, T., & Carciello, N. R. (1992). Carbonation of hydrothermally treated phosphate-bonded calcium aluminate cements. Cement and Concrete Research, 22, 783–792. DOI:10.1016/0008-8846(92)90102-2.

    Article  CAS  Google Scholar 

  • Sugama, T., Weber, L., & Brothers, L. E. (2000), Sodiumpolyphosphate-modified fly ash/calcium aluminate blend cement: durability in wet harsh geothermal environments. Materials Letters, 44, 45–53. DOI: 10.1016/s0167-577x(00)00002-1.

    Article  CAS  Google Scholar 

  • Taichi, S. (1985). Thermal decomposition of aluminium hydroxides to aluminas, Thermochimica Acta, 88, 69–84. DOI: 10.1016/0040-6031(85)85415-0.

    Article  Google Scholar 

  • Živica, V. (2009). Effects of the very low water/cement ratio. Construction and Building Materials, 23, 3579–3582. DOI:10.1016/j.conbuildmat.2009.03.014.

    Article  Google Scholar 

  • Živica, V., & KriŽma, M. (2011). Dependence of efficiency of pressure compaction on the cement type used. Construction and Building Materials, 25, 3073–3077. DOI:10.1016/j.conbuildmat.2010.12.061.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Palou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palou, M., Bágeľ, Ľ. Preparation and properties of cementitious composites for geothermal applications. Chem. Pap. 66, 881–890 (2012). https://doi.org/10.2478/s11696-012-0166-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0166-y

Keywords

Navigation