Skip to main content
Log in

Bedform characteristics in natural and regulated channels: A comparative field study on the Wilga River, Poland

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper presents results of a field investigation conducted to examine the bed sediment, riverbed morphology and flow structure over dunes in natural and regulated channels. Field measurements using an acoustic Doppler current profiler (ADCP) have been carried out on two parts of lowland Wilga River in Poland. It is shown that the bedforms with a low angle of lee side develop more frequently than asymmetrical dunes with high lee-side angles, which are mostly associated with the occurrence of local scours and river meanders. Wavenumber analysis of bed elevation confirms the existence of scaling region in the longitudinal wavenumber spectrum, with “−3” scaling exponents for the natural and regulated channels as well. Moreover, the results of flow velocity field are presented in the form of a 2-D streamwise-vertical vector field, showing several similarities to previous laboratory and field investigations conducted on much deeper rivers than the Wilga. The experimental campaign and methods used to obtain the results are also presented briefly. In addition, a short database of fluvial dunes statistics is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberle, J., V. Nikora, M. Henning, B. Ettmer, and B. Hentschel (2010), Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany, Water Resour. Res. 46,3, W03521, DOI: 10.1029/2008WR007406.

    Google Scholar 

  • Aberle, J., S.E. Coleman, and V.I. Nikora (2012), Bed load transport by bed form migration, Acta Geophys. 60,6, 1720–1743, DOI: 10.2478/s11600-012-0076-y.

    Article  Google Scholar 

  • Annambhotla, V.S.S., W.W. Sayre, and R.H. Livesey (1972), Statistical properties of Missouri River bed forms, J. Waterw. Harbors Coastal Eng. Div. 98,4, 489–510.

    Google Scholar 

  • ASCE Task Committee on Flow and Transport over Dunes (2002), Flow and transport over dunes, J. Hydraul. Eng. 128,8, 726–728, DOI: 10.1061/(ASCE) 0733-9429(2002)128:8(726).

    Article  Google Scholar 

  • Ashley, G.M. (1990), Classification of large-scale subaqueous bedforms: a new look at an old problem — SEPM bedforms and bedding structures, J. Sediment. Petrol. 60,1, 160–172, DOI: 10.2110/jsr.60.160.

    Article  Google Scholar 

  • Best, J. (2005), The fluid dynamics of river dunes: A review and some future research directions, J. Geophys. Res. 110, F4, F04S02, DOI: 10.1029/2004JF000218.

    Google Scholar 

  • Best, J., and R. Kostaschuk (2002), An experimental study of turbulent flow over a low-angle dune, J. Geophys. Res. 107, C9, 18-1–18-19, DOI: 10.1029/2000JC000294.

    Google Scholar 

  • Bialik, R.J. (2013), Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement, J. Hydrol. Hydromech. 61,3, 202–207, DOI: 10.2478/johh-2013-0026.

    Article  Google Scholar 

  • Bose, S.K., and S. Dey (2009), Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves, Phys. Rev. E 80,3, 036304, DOI: 10.1103/PhysRevE.80.036304.

    Article  Google Scholar 

  • Bradley, R.W., J.G. Venditti, R.A. Kostaschuk, M. Church, M. Hendershot, and M.A. Allison (2013), Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada, J. Geophys. Res. 118,3, 1693–1709, DOI: 10.1002/jgrf.20118.

    Article  Google Scholar 

  • Carling, P.A., E. Gölz, H.G. Orr, and A. Radecki-Pawlik (2000a), The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology, Sedimentology 47,1, 227–252, DOI: 10.1046/j.1365-3091.2000.00290.x.

    Article  Google Scholar 

  • Carling, P.A., J.J. Williams, E. Gölz, and A.D. Kelsey (2000b), The morphodynamics of fluvial sand dunes in the River Rhine near Mainz, Germany. II. Hydrodynamics and sediment transport, Sedimentology 47,1, 253–278, DOI: 10.1046/j.1365-3091.2000.00291.x.

    Article  Google Scholar 

  • Carling, P.A., A. Radecki-Pawlik, J.J. Williams, B. Rumble, L. Meshkova, P. Bell, and R. Breakspear (2006a), The morphodynamics and internal structure of intertidal fine-gravel dunes: Hills Flats, Severn Estuary, UK, Sediment. Geol. 183,3–4, 159–179, DOI: 10.1016/j.sedgeo.2005.07.007.

    Article  Google Scholar 

  • Carling, P.A., L. Whitcombe, I.A. Benson, B.G. Hankin, and A.M. Radecki-Pawlik (2006b), A new method to determine interstitial flow patterns in flume studies of sub-aqueous gravel bedforms such as fish nests, River Res. Applic. 22,6, 691–701, DOI: 10.1002/rra.930.

    Article  Google Scholar 

  • Chang, K., and G. Constantinescu (2013), Coherent structures in flow over two-dimensional dunes, Water Resour. Res. 49,5, 2446–2460, DOI: 10.1002/wrcr.20239.

    Article  Google Scholar 

  • Chanson, H. (2008), Acoustic Doppler velocimetry (ADV) in the field and in laboratory: practical experiences. In: F. Larrarte and H. Chanson (eds.), Proc. Int. Meeting on Measurements and Hydraulics of Sewers “Experiences and Challenges in Sewers: Measurements and Hydrodynamics”, 19–21 August 2008, Bouguenais, France, 49–66.

    Google Scholar 

  • Chen, J., Z. Wang, M. Li, T. Wei, and Z. Chen (2012), Bedform characteristics during falling flood stage and morphodynamic interpretation of the middlelower Changjiang (Yangtze) River channel, China, Geomorphology 147–148, 18–26, DOI: 10.1016/j.geomorph.2011.06.042.

    Article  Google Scholar 

  • Coleman, S.E. (2010), Fluvial sediment transport and morphology: views from upstream and midstream. In: A. Dittrich, K. Koll, J. Aberle, and P. Geisenhainer (eds.), Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2010”, 8–10 September 2010, Braunschweig, Germany, 11–21.

    Google Scholar 

  • Coleman, S.E. (2011), Experimental investigations of sandy riverbed morphology. In: P. Rowiński (ed.), Experimental Methods in Hydraulic Research, Geo-Planet: Earth and Planetary Sciences, Springer-Verlag, Berlin-Heidelberg, 1–27, DOI: 10.1007/978-3-642-17475-9_1.

    Chapter  Google Scholar 

  • Coleman, S.E., and B.W. Melville (1994), Bed-form development, J. Hydraul. Eng. 120,5, 544–560, DOI: 10.1061/(ASCE)0733-9429(1994)120:5(544).

    Article  Google Scholar 

  • Coleman, S.E., and V.I. Nikora (2011), Fluvial dunes: initiation, characterization, flow structure, Earth Surf. Process. Land. 36,1, 39–57, DOI: 10.1002/esp.2096.

    Article  Google Scholar 

  • Flemming, B.W. (1988), On the classification of underwater, flow-transverse transport body, Boch. Geol. Geotechn. Arb. 29, 44–47 (in German).

    Google Scholar 

  • Gabel, S.L. (1993), Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, USA, Sedimentology 40,2, 237–269, DOI: 10.1111/j.1365-3091.1993.tb01763.x.

    Article  Google Scholar 

  • Grinvald, D.I., and V.I. Nikora (1988), River Turbulence, Hydrometeoizdat, Leningrad, 152 pp. (in Russian).

    Google Scholar 

  • Hino, M. (1968), Equilibrium-range spectra of sand waves formed by flowing water, J. Fluid Mech. 34,3, 565–573, DOI: 10.1017/S0022112068002089.

    Article  Google Scholar 

  • Jain, S.C., and J.F. Kennedy (1974), The spectral evolution of sedimentary bed forms, J. Fluid Mech. 63,2, 301–314, DOI: 10.1017/S0022112074001157.

    Article  Google Scholar 

  • Karpiński, M., R.J. Bialik, and P.M. Rowiński (2013), Application of Lattice Boltzmann Method for generation of flow velocity field over river bed-forms. In: P. Rowiński (ed.), Experimental and Computational Solutions of Hydraulic Problems, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin-Heidelberg, 327–335, DOI: 10.1007/978-3-642-30209-1_23.

    Chapter  Google Scholar 

  • Kostaschuk, R., J. Best, P. Villard, J. Peakall, and M. Franklin (2005), Measuring flow velocity and sediment transport with an acoustic Doppler current profiler, Geomorphology 68,1–2, 25–37, DOI: 10.1016/j.geomorph.2004.07.012.

    Article  Google Scholar 

  • Moll, J.R., T. Schilperoort, and A.J. De Leeuw (1987), Stochastic analysis of bedform dimensions, J. Hydraul. Res. 25,4, 465–479, DOI: 10.1080/00221688709499263.

    Article  Google Scholar 

  • Nelson, J.M., R.L. Shreve, S.R. McLean, and T.G. Drake (1995), Role of near-bed turbulence structure in bed load transport and form mechanics, Water Resour. Res. 31,8, 2071–2086, DOI: 10.1029/95WR00976.

    Article  Google Scholar 

  • Nikora, V.I. (1983), Sand wave spectra in a translational flow, Met. Hydrol. 5, 92–102 (in Russian).

    Google Scholar 

  • Nikora, V.I. (1987), Methods for quantitative description of channel bed-forms, In: Erosional and Channel Processes in Various Climatic Conditions, Moscow University, Moscow, 327–328 (in Russian).

    Google Scholar 

  • Nikora, V.I., A. Sukhodolov, G. Shalar, and P.M. Rowiński (1995), Field measurements of sand wave spectra in river. In: Proc. 8th Int. Conf. on Transport and Sedimentation of Solid Particles, 24–26 January 1995, Prague, Czech Republic, B7-1–B7-6.

    Google Scholar 

  • Nikora, V.I., A.N. Sukhodolov, and P.M. Rowiński (1997), Statistical sand wave dynamics in one-directional water flows, J. Fluid. Mech. 351, 17–39, DOI: 10.1017/S0022112097006708.

    Article  Google Scholar 

  • Omidyeganeh, M., and U. Piomelli (2013), Large-eddy simulation of threedimensional dunes in a steady, unidirectional flow. Part 2. Flow structures, J. Fluid. Mech. 734, 509–534, DOI: 10.1017/jfm.2013.499.

    Article  Google Scholar 

  • Parsons, D.R., J.L. Best, O. Orfeo, R.J. Hardy, R. Kostaschuk, and S.N. Lane (2005), Morphology and flow fields of three-dimensional dunes, Río Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling, J. Geophys. Res. 110,F4, F04S03, DOI: 10.1029/2004JF000231.

    Google Scholar 

  • Parsons, D.R., P.R. Jackson, J.A. Czuba, F.L. Engel, B.L. Rhoads, K.A. Oberg, J.L. Best, D.S. Mueller, K.K. Johnson, and J.D. Riley (2013), Velocity Mapping Toolbox (VMT): a processing and visualization suite for movingvessel ADCP measurements, Earth Surf. Process. Land. 38,11, 1244–1260, DOI: 10.1002/esp.3367.

    Article  Google Scholar 

  • Petrie, J., P. Diplas, M. Gutierrez, and S. Nam (2013), Combining fixed- and moving-vessel acoustic Doppler current profiler measurements for improved characterization of the mean flow in a natural river, Water Resour. Res. 49,9, 5600–5614, DOI: 10.1002/wrcr.20396.

    Article  Google Scholar 

  • Qin, J., D. Zhong, and G. Wang (2013), Characterizing sand ripples at equilibrium phases, J. Hydrol. Hydromech. 61,4, 293–298, DOI: 10.2478/johh-2013-0037.

    Article  Google Scholar 

  • Radecki-Pawlik, A., P. Carling, and L. Książek (2010). Sand-gravel subaquatic bed forms system in the Raba River — the morphology and granulometrics. In: Proc. 12th River Morphological Colloquium “Fluvial Systems in Space and Time”, Bundesanstalt für Gewässerkunde BfG, Koblenz, Germany, 47–58.

    Google Scholar 

  • Ramirez, M.T., and M.A. Allison (2013), Suspension of bed material over sand bars in the Lower Mississippi River and its implications for Mississippi delta environmental restoration, J. Geophys. Res. 118,2, 1085–1104, DOI: 10.1002/jgrf.20075.

    Article  Google Scholar 

  • Shugar, D.H., R. Kostaschuk, J.L. Best, D.R. Parsons, S.N. Lane, O. Orfeo, and R.J. Hardy (2010), On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina, Sedimentology 57,1, 252–272, DOI: 10.1111/j.1365-3091.2009.01110.x.

    Article  Google Scholar 

  • Simons, D.B., E.V. Richardson, and C.F. Nordin Jr. (1960), Sedimentary structures generated by flow in alluvial channels. In: Special Publications of SEPM, The Society of Economic Paleontologists and Mineralogists, Primary Sedimentary Structures (SP12), 34–52.

    Google Scholar 

  • Stoesser, T., C. Braun, M. García-Villalba, and W. Rodi (2008), Turbulence structures in flow over two-dimensional dunes, J. Hydraul. Eng. 134,1, 42–55, DOI: 10.1061/(ASCE)0733-9428(2008)134:1(42).

    Article  Google Scholar 

  • Sukhodolov, A.N., J.J. Fedele, and B.L. Rhoads (2004), Turbulent flow over mobile and molded bedforms: a comparative field study. In: M. Greco, A. Carravetta, and R. Della Morte (eds.), Proc. 2nd Int. Conf. on Fluvial Hydraulics “River Flow 2004”, 23–25 June 2004, Napoli, Italy, 317–325.

    Google Scholar 

  • Sukhodolov, A.N., J.J. Fedele, and B.L. Rhoads (2006), Structure of flow over alluvial bedforms: an experiment on linking field and laboratory methods, Earth Surf. Process. Land. 31,10, 1292–1310, DOI: 10.1002/esp.1330.

    Article  Google Scholar 

  • Szkutnicki, J. (1996), An Experimental Estimation of the Roughness of a River’s Beds, Materiały Badawcze, Ser. Hydrologia i Oceanologia, Vol. 19, IMiGW, Warszawa, 51 pp. (in Polish).

    Google Scholar 

  • Tsubaki, R., Y. Kawahara, Y. Muto, and I. Fujita (2012), New 3-D flow interpolation method on moving ADCP data, Water Resour. Res. 48,5, W05539, DOI: 10.1029/2011WR010867.

    Google Scholar 

  • Tuijnder, A.P., J.S. Ribberink, and S.J.M.H. Hulscher (2009), An experimental study into the geometry of supply-limited dunes, Sedimentology 56,6, 1713–1727, DOI: 10.1111/j.1365-3091.2009.01054.x.

    Article  Google Scholar 

  • Vanoni, V.A., and L.S. Hwang (1967), Relation between bed forms and friction in streams, J. Hydraul. Div. ASCE 93,3, HY3, 121–144.

    Google Scholar 

  • Xie, Z.H., B.L. Lin, R.A. Falconer, and T.B. Maddux (2013), Large-eddy simulation of turbulent open-channel flow over three-dimensional dunes, J. Hydraul. Res. 51,5, 494–505, DOI: 10.1080/00221686.2013.835287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Bialik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bialik, R.J., Karpiński, M., Rajwa, A. et al. Bedform characteristics in natural and regulated channels: A comparative field study on the Wilga River, Poland. Acta Geophys. 62, 1413–1434 (2014). https://doi.org/10.2478/s11600-014-0239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-014-0239-0

Key words

Navigation