Skip to main content
Log in

Terrestrial radioisotopes in black shale hosted Mn-carbonate deposit (Úrkút, Hungary)

  • Research article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Previously, little attention has been paid to terrestrial radioisotopes (U, Th, 40K) occurring in manganese ores, despite the fact that the biogeochemical relationship between Mn and U is versatile. Occurrence of terrestrial radioisotopes in great amounts during mining on a long-term causes significant radiation exposure. It is important to inspect black shale-hosted manganese ores from this aspect, as black shales are typically potential U-rich formations. Despite the increased radon concentration in the mine, based on the detailed major elements, trace elements and gamma spectroscopy inspection of the rock types of deposit, the U, Th enrichment was undetectable. However, the U and Th content of about average terrestrial abundance of the great ore amount may be in the background of the increased radon concentration level. This Mn-carbonate ore deposit in spite of the low U content exhibit potential radon danger for miners, which can be eliminated with intensive air change only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel-Ghany, H.A. (2010), Natural activities of 238U, 232Th, and 40K in manganese ore, Am. J. Environ. Sci. 6,1, 90–94, DOI: 10.3844/ajessp.2010.90.94.

    Article  Google Scholar 

  • Aller, R.C., and P.D. Rude (1988), Complete oxidation of solid phase sulphides by manganese and bacteria in anoxic marine sediments, Geochim. Cosmochim. Acta 52,3, 751–765, DOI: 10.1016/0016-7037(88)90335-3.

    Article  Google Scholar 

  • Breitner, D., T. Turtiainen, H. Arvela, P. Vesterbacka, B. Johanson, M. Lehtonen, K.-H. Hellmuth, and C. Szabó (2008), Multidisciplinary analysis of Finnish esker sediment in radon source identification, Sci. Total. Environ. 405,1–3, 129–139, DOI: 10.1016/j.scitotenv.2008.06.015.

    Article  Google Scholar 

  • Cote, P., and M.G. Townsend (1981), Mixtures of radon and thoron daughters in underground atmospheres, Health Phys. 40,1, 5–17, DOI: 10.1097/00004032-198101000-00002.

    Article  Google Scholar 

  • Cuney, M., and K. Kyser (2008), Recent and Not-so-recent Developments in Uranium Deposits and Implications for Exploration, Mineralogical Association of Canada, Short Course Series, Vol. 39.

    Google Scholar 

  • Darby, S.C., E. Whitely, G.R. Howe, S.J. Hutchings, R.A. Kusiak, J.H. Lubin, H.I. Morrison, M. Tirmarche, L. Tomásek, E.P. Radford, R.J. Roscoe, J.M. Samet, and S.X. Yao (1995), Radon and cancers other than lung cancer in underground miners: a collaborative analysis of 11 studies, J. Natl. Cancer Inst. 87,5, 378–384, DOI: 10.1093/jnci/87.5.378.

    Article  Google Scholar 

  • Grasselly, G., and G. Pantó (1988), Rare Earth elements in the manganese deposit of Úrkút (Bakony Mountains, Hungary), Ore Geol. Rev. 4,1–2, 115–124, DOI: 10.1016/0169-1368(88)90007-8.

    Article  Google Scholar 

  • Kaeding, L, O. Brockamp, and H. Harder (1983), Submarin-hydrothermale Entstehung der Sedimentären Mangan-Lagerstätte Úrkút (Ungarn), Chem. Geol. 40,3–4, 251–268, 10.1016/0009-2541(83)90032-3 (in German).

    Article  Google Scholar 

  • Kávási, N., C. Németh, T. Kovács, S. Tokonami, V. Jobbágy, A. Várhegyi, Z. Gorjánácz, T. Vigh, and J. Somlai (2007), Radon and thoron parallel measurements in Hungary, Radiat. Prot. Dosim. 123,2, 250–253, DOI: 10.1093/rpd/ncl102.

    Article  Google Scholar 

  • Kávási, N., J. Somlai, T. Vigh, S. Tokonami, T. Ishikawa, A. Sorimachi, and T. Kovács (2009), Difficulties in the dose estimate of workers originated from radon and radon progeny in a manganese mine, Radiat. Meas. 44,3, 300–305, DOI: 10.1016/j.radmeas.2009.03.014.

    Article  Google Scholar 

  • Kelly, S.D. (2010), Uranium chemistry in soils and sediments. In: A. Hartemink and A. McBratney (eds.), Developments in Soil Science, Vol. 34, Elsevier Press, Amsterdam, 411–466, DOI: 10.1016/S0166-2481(10)34014-1.

    Google Scholar 

  • Laznicka, P. (1992), Manganese deposits in the global lithogenetic system: Quantitative approach, Ore Geol. Rev. 7,4, 279–356, DOI: 10.1016/0169-1368(92) 90013-B.

    Article  Google Scholar 

  • Mason, B.H. (1958), Principles of Geochemistry, 2nd ed., John Wiley and Sons, New York.

    Google Scholar 

  • OECD/NEA-IAEA (2008), Uranium 2007: Resources, Production and Demand, Red Book, OECD, Paris.

    Google Scholar 

  • Polgári, M. (1993), Manganese Geochemistry Reflected by Black Shale Formation and Diagenetic Processes: Model of Formation of the Carbonatic Manganese Ore of Úrkút, Special Series of Hungarian Geological Institute, Karpati Publish House, Ushgorod, 211 pp.

    Google Scholar 

  • Polgári, M., Z. Szabó, and T. Szederkényi (eds.) (2000), Manganese ores in Hungary. In Commemoration of Professor Gyula Grasselly, Juhász Publishing House, Szeged, 675 pp.

    Google Scholar 

  • Polgári, M., M. Szabó-Drubina, and J.R. Hein (2003), Phosphogenesis in Jurassic black shale-hosted Mn-carbonate deposits, Úrkút and Eplény, Hungary, Investigations on archive sample drillcore Úrkút-136, Bull. Hung. Geol. Surv. 133,1, 37–48.

    Google Scholar 

  • Polgári, M., J.R. Hein, T. Vigh, M. Szabó-Drubina, I. Fórizs, L. Bíró, A. Müller, and A.L. Tóth (2012), Microbial processes and the origin of the Úrkút manganese deposit, Hungary, Ore Geol. Rev. 47, 87–109, DOI: 10.1016/j.oregeorev.2011.10.001.

    Article  Google Scholar 

  • Roy, S. (1988), Manganese metallogenesis: A review, Ore Geol. Rev. 4,1–2, 155–170, DOI: 10.1016/0169-1368(88)90011-X.

    Article  Google Scholar 

  • Segev, A. (1992), Remobilization of uranium and associated metals through karstification processes: A case study from the Timna Formation (Cambrian), Southern Israel, Ore Geol. Rev. 7,2, 135–148, DOI: 10.1016/0169-1368(92)90009-A.

    Article  Google Scholar 

  • Szabó, I.M. (1989), Microbiology of Biosphere, Akadémiai Kiadó, Budapest (in Hungarian).

    Google Scholar 

  • Tirmarche, M., A. Raphalen, F. Allin, J. Chameaud, and P. Bredon (1993), Mortality of a cohort of French uranium miners exposed to relatively low radon concentrations, Br. J. Cancer. 67,5, 1090–1097, DOI: 10.1038/bjc.1993.200.

    Article  Google Scholar 

  • Trueman, C.N., and N. Tuross (2002), Trace elements in recent and fossil bone apatite, Rev. Mineral Geochem. 48,1, 489–521, DOI: 10.2138/rmg.2002.48.13.

    Article  Google Scholar 

  • Varentsov, I.M., G., Grasselly, and Z. Szabó (1988), Ore-formation in the early-Jurassic basin of Central-Europe: Aspects of mineralogy, geochemistry, and genesis of the Úrkút manganese deposit, Hungary, Chem. Erde — Geochem. 48, 257–304.

    Google Scholar 

  • Weiszburg, T.G., E. Tóth, and A. Beran (2004), Celadonite, the 10-Å green clay mineral of the manganese carbonate ore, Úrkút, Hungary, Acta Mineral. Petrogr. 45,1, 65–80.

    Google Scholar 

  • Wignall, P.B. (1994), Black Shales, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Vigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigh, T., Kovács, T., Somlai, J. et al. Terrestrial radioisotopes in black shale hosted Mn-carbonate deposit (Úrkút, Hungary). Acta Geophys. 61, 831–847 (2013). https://doi.org/10.2478/s11600-013-0124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0124-2

Key words

Navigation