Skip to main content
Log in

Wave moment geodynamics

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The work presents a review of natural-science representations on the rotary motion of matter and its piecewise structure. Development of dense GPS-networks allowed to experimentally confirm the concept of block structures of the geophysical environment and to prove rotary character of block movement. An analysis of both the migration of earthquake sources and the movement of sections of tectonic plates’ borders has allowed to reveal general properties of such movements and to prove their wave nature. It is shown that within the limits of rotational model, blocks and plates are interconnected among themselves by the elastic long-range fields forming a uniform planetary geodynamic field. It is offered to use the geodynamic solutions of rotational model in the one class of phenomena as a basis at the construction of a new geological paradigm — wave moment geodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, V.A., and B.P. Kondratèv (1995), On the conditional extremum for the gravitational energy inherent to the oblate spheroid, Astron. Astrophys. Trans.: J. Eurasian Astron. Soc. 7,2–3, 173–176, DOI: 10.1080/10556799508205413.

    Article  Google Scholar 

  • Bykov, V.G. (2008), Stick-slip and strain waves in the physics of earthquake rupture: experiments and models, Acta Geophys. 56,2, 270–285, DOI: 10.2478/s11600-008-0002-5.

    Article  Google Scholar 

  • Chandrasekhar, S., and P.H. Roberts (1963), The ellipticity of a slow rotating configuration, Astrophys. J. 138, 801–808, DOI: 10.1086/147686.

    Article  Google Scholar 

  • De Rubeis, V., Z. Czechowski, and R. Teisseyre (eds.) (2010), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin, 390 pp.

    Google Scholar 

  • Elsasser, W.M. (1969), Convection and stress propagation in the upper mantle. In: S.K. Runcorn (ed.), Applications of Modern Physics to the Earth and Planetary Interiors, Wiley-Interscience, New York, 223–246.

    Google Scholar 

  • Flesch, L.M., A.J. Haines, and W.E. Holt (2001), Dynamics of the India-Eurasia collision zone, J. Geophys. Res. 106,B8, 16435–16460, DOI: 10.1029/2001JB000208.

    Article  Google Scholar 

  • Fujiwhara, S., T. Tsujimura, and S. Kusamitsu (1933), On the Earth-Vortex, Echelon Faults and Allied Phenomena, Akademische Verlagsgesellschaft, Leipzig.

    Google Scholar 

  • Gershenzon, N.I., V.G. Bykov, and G. Bambakidis (2009), Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model, Phys. Rev. E 79, 056601, DOI: 10.1103/PhysRevE.79. 056601.

    Article  Google Scholar 

  • Heirtzler, J.R., G.O. Dickson, E.M. Herron, W.C. Pitman, and X. Le Pichon (1968), Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents, J. Geophys. Res. 73,6, 2119–2136, DOI: 10.1029/JB073i006p02119.

    Article  Google Scholar 

  • Isacks, B., J. Oliver, and L.R. Sykes (1968), Seismology and the new global tectonics, J. Geophys. Res. 73, 133–179, DOI: 10.1029/JB073i018p05855.

    Article  Google Scholar 

  • Kuzikov, S.I., and Sh.A. Mukhamediev (2010), Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network, Izv. Phys. Solid Earth 46,7, 584–601, DOI: 10.1134/S1069351310070037.

    Article  Google Scholar 

  • Landau, L.D., and E.M. Lifshitz (1976), Mechanics, Course of Theoretical Physics, Vol. 1, Buttroworth-Heinemann, Amsterdam.

    Google Scholar 

  • Le Pichon, X. (1968), Sea-floor spreading and continental drift, J. Geophys. Res. 73,12, 3661–3697, DOI: 10.1029/JB073i012p03661.

    Article  Google Scholar 

  • Lee, J.S. (1928), Some characteristic structural types in Eastern Asia and their bearing upon the problem of continental movements, Geol. Mag. 66,9, 422–430, DOI: 10.1017/S001675680010531X.

    Google Scholar 

  • Lee, W.H.K., M. Çelebi, M.I. Todorovska, and H. Igel (2009a), Introduction to the Special Issue on rotational seismology and engineering applications, Bull. Seismol. Soc. Am. 99,2B, 945–957, DOI: 10.1785/0120080344.

    Article  Google Scholar 

  • Lee, W.H.K., H. Igel, and D. Trifunac (2009b), Recent advances in rotational seismology, Seismol. Res. Lett. 80,3, 479–490, DOI: 10.1785/gssrl.80.3.479.

    Article  Google Scholar 

  • Magnitskiy, V.A. (1967), The Internal Structure and Physics of the Earth, NASA, Washington D.C.

    Google Scholar 

  • Morgan, W.J. (1968), Rises, trenches, great faults and crustal blocks, J. Geophys. Res. 73,6, 1959–1982, DOI: 10.1029/JB073i006p01959.

    Article  Google Scholar 

  • Nikolaevskiy, V.N. (1996), Geomechanics and Fluidodynamics, Kluwer Academic Publ., Dordrecht.

    Google Scholar 

  • Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res. 108, 2285, DOI: 10.1029/2001JB000661.

    Article  Google Scholar 

  • Riemann, B. (1861), Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartingen Ellipsoides, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 9.

  • Takeuchi, A. (1986), On the episodic vicissitude of tectonic stress field of the Cenozonic northeast Honshu arc, Japan. In: N. Nasu et al. (eds.), Formation of Active Ocean Margins, Kluwer Academic Publ., Tokyo, 443–465.

    Google Scholar 

  • Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: difference between vorticity and spin equations, Acta Geophys. 58,6, 1056–1071, DOI: 10.2478/s11600-010-0029-2.

    Article  Google Scholar 

  • Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: Spin and shear-twist wave mosaic, Acta Geophys. 59,3, 453–469, DOI: 10.2478/s11600-011-0001-9.

    Article  Google Scholar 

  • Thatcher, W. (1995), Microplate versus continuum descriptions of active tectonic deformation, J. Geophys. Res. 100,B3, 3885–3894, DOI: 10.1029/ 94JB03064.

    Article  Google Scholar 

  • Vikulin, A.V. (2006), Earth rotation, Elasticity and Geodynamics: Earthquake Wave Rotary Model. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer, Berlin, 273–289, DOI: 10.1007/3-540-31337-0_20.

    Chapter  Google Scholar 

  • Vikulin, A.V. (2008), Energy and moment of the Earth’s rotational field, Russ. Geol. Geophys. 49, 422–429.

    Article  Google Scholar 

  • Vikulin, A.V. (2009), Physics of the Earth and Geodynamics, KamGU, Petropavlovsk-Kamchatsky, 463, www.kscnet.ru (in Russian).

    Google Scholar 

  • Vikulin, A.V. (2011), Seismicity, Volcanism, Geodynamics: Selected Works, KamGU, Petropavlovsk-Kamchatskii, 407, www.kscnet.ru (in Russian).

    Google Scholar 

  • Vikulin, A.V., and G.A. Ivanchin (2000), Rotational model of seismic process, Russ. J. Pac. Geol. 15,6, 1225–1240.

    Google Scholar 

  • Vikulin, A.V., and A.N. Krolevets (2002), Seismotectonic processes and the Chandler oscillation, Acta Geophys. Pol. 50,3, 395–411.

    Google Scholar 

  • Vikulin, A.V., and T.Yu. Tveritinova (2008), Momentum-wave nature of geological medium, Mosc. Univ. Geol. Bull. 63,6, 368–371, DOI: 10.3103/ S0145875208060033.

    Article  Google Scholar 

  • Vikulin, A.V., A.G. Ivanchin, and T.Yu. Tveritinova (2011), Moment vortex geodynamics, Mosc. Univ. Geol. Bull. 66,1, 29–36, DOI: 10.3103/S014587521101008X.

    Article  Google Scholar 

  • Xie, X.-S. (2004), Discussion on rotational tectonics stress field and the genesis of circum-Ordos landmass fault system, Acta Seismol. Sinica 17,4, 464–472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr V. Vikulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikulin, A.V., Tveritinova, T.Y. & Ivanchin, A.G. Wave moment geodynamics. Acta Geophys. 61, 245–263 (2013). https://doi.org/10.2478/s11600-012-0079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0079-8

Key words

Navigation