Skip to main content
Log in

On integral approach to regional gravity field modelling from satellite gradiometric data

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Solution of the gradiometric boundary value problems leads to three integral formulas. If we are satisfied with obtaining a smooth solution for the Earth’s gravity field, we can use the formulas in regional gravity field modelling. In such a case, satellite gradiometric data are integrated on a sphere at satellite level and continued downward to the disturbing potential (geoid) at sea level simultaneously. This paper investigates the gravity field modelling from a full tensor of gravity at satellite level. It studies the truncation bias of the integrals as well as the filtering of noise of data. Numerical studies show that by integrating T zz with 1 mE noise and in a cap size of 7°, the geoid can be recovered with an error of 12 cm after the filtering process. Similarly, the errors of the recovered geoids from T xz,yz and T xx-yy, 2xy are 13 and 21 cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertella, A, F. Migliaccio, and F. Sansó (2002), GOCE: The earth gravity field by space gradiometry, Celest. Mech. Dyn. Astr. 83, 1–4, 1–15, DOI: 10.1023/A: 1020104624752.

    Article  Google Scholar 

  • Arabelos, D., and C.C. Tscherning (1990), Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT, J. Geodesy 64, 4, 363–382, DOI: 10.1007/BF02538409.

    Google Scholar 

  • Arabelos, D., and C.C. Tscherning (1993), Regional recovery of the gravity field from SGG and SST/GPS data using collocation. In: Study of the Gravity Field Determination Using Gradiometry and GPS, Phase 1, Final Report ESA Contract 9877/92/F/FL, April.

  • Arabelos, D., and C.C. Tscherning (1995), Regional recovery of the gravity field from satellite gravity gradiometer and gravity vector data using collocation, J. Geophys. Res. 100, B11, 22009–22015, DOI: 10.1029/95JB00748.

    Article  Google Scholar 

  • Arabelos, D., and C.C. Tscherning (1999), Gravity field recovery from airborne gradiometer data using collocation and taking into account correlated errors, Phys. Chem. Earth A 24, 1, 19–25, DOI: 10.1016/S1464-1895(98)00005-2.

    Article  Google Scholar 

  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, H. Sünkel, and P. Woodworth (1998), European views on dedicated gravity field missions: GRACE and GOCE, Earth Sciences Division Consultation Document, European Space Agency, ESD-MAG-REP-CON-001.

  • Balmino, G., F. Perosanz, R. Rummel, N. Sneeuw, and H. Suenkel (2001), CHAMP, GRACE and GOCE: Mission concepts and simulations, Boll. Geofis. Teor. Appl. 40, 3–4, 309–320.

    Google Scholar 

  • ESA (1999), Gravity field and steady-state ocean circulation mission, Reports for Mission Selection “The Four Candidate Earth Explorer Missions”, ESA Publications Division, ESA SP-1233(1), 217 pp.

  • Eshagh, M. (2008), Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame, Comput. Geosci. 34, 12, 1762–1768, DOI: 10.1016/j.cageo.2008.02.022.

    Article  Google Scholar 

  • Eshagh, M. (2009a), On satellite gravity gradiometry, Ph.D. Thesis in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden.

    Google Scholar 

  • Eshagh, M. (2009b), Spatially restricted integrals in gradiometric boundary value problems, Artif. Satel. 44, 4, 131–148, DOI: 10.2478/v10018-009-0025-4.

    Article  Google Scholar 

  • Eshagh, M. (2010), Alternative expressions for gravity gradients in local north-oriented frame and tensor spherical harmonics, Acta Geophys. 58, 2, 215–243, DOI: 10.2478/s11600-009-0048-z.

    Article  Google Scholar 

  • Eshagh, M., and L.E. Sjöberg (2009), Satellite Gravity Gradiometry: An Approach to High Resolution Gravity Field Modelling from Space, VDM Verlag, 244 pp., ISBN-13:978-3639203509.

  • Heiskanen, W., and H. Moritz (1967), Physical Geodesy, W.H. Freeman and Co., San Francisco — London, 364 pp.

    Google Scholar 

  • Ilk, K.H. (1983), Ein Beitrag zür Dynamik ausgedehnter Körper-Gravitationswechselwirkung, Deutsche Geodätische Kommission Bayer Akad. Wiss., Reihe C, Heft 288, 181 pp.

  • Janak, J., Y. Fukuda, and P. Xu (2009), Application of GOCE data for regional gravity field modeling, Earth Planets Space 61, 7, 835–843.

    Google Scholar 

  • Koop, R. (1993), Global gravity field modelling using satellite gravity gradiometry, Netherlands Geodetic Commission, Delft.

    Google Scholar 

  • Kotsakis, C. (2007), A covariance-adaptive approach for regularized inversion in linear models, Geophys. J. Int. 171, 2, 509–522, DOI: 10.1111/j.1365-246X.2007.03534.x.

    Article  Google Scholar 

  • Krarup, T. (1969), A contribution to the mathematical foundation of physical geodesy, Geod. Inst. Copenhagen, Meddelelse, No. 44, 80 pp.

    Google Scholar 

  • Krarup, T., and C.C. Tscherning (1984), Evaluation of isotropic covariance functions of torsion balance observations, J. Geodesy 58, 2, 180–192, DOI: 10.1007/BF02520900.

    Google Scholar 

  • Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861.

  • Martinec, Z. (2003), Green’s function solution to spherical gradiometric boundary-value problems, J. Geodesy 77, 1–2, 41–49, DOI: 10.1007/s00190-002-0288-z.

    Article  Google Scholar 

  • Müller, J., and M. Wermut (2003), GOCE gradients in various reference frames and their accuracies, Adv. Geosci. 1, 33–38, DOI: 10.5194/adgeo-1-33-2003.

    Article  Google Scholar 

  • Novák, P. (2007), Integral inversion of SST data of type GRACE, Stud. Geophys. Geod. 51, 3, 351–367, DOI: 10.1007/s11200-007-0020-9.

    Article  Google Scholar 

  • Novák, P., and E.W. Grafarend (2006), The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data, Stud. Geophys. Geod. 50, 4, 549–582, DOI: 10.1007/s11200-006-0035-7.

    Article  Google Scholar 

  • Paul, M.K., (1978), Recurrence relations for integrals of associated Legendre functions, J. Geodesy 52, 3, 177–190, DOI: 10.1007/BF02521771.

    Google Scholar 

  • Petrovskaya, M.S., and A.N. Vershkov (2006), Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames, J. Geodesy 80, 3, 117–127, DOI: 10.1007/s00190-006-0031-2.

    Article  Google Scholar 

  • Reed, G.B. (1973), Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry, Ohio State University, Dept. of Geod. Science, Rep. No. 201, Columbus, Ohio.

  • Rummel, R. (1997), Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Springer, Berlin-Heidelberg, 359–404, DOI: 10.1007/BFb0011710.

    Chapter  Google Scholar 

  • Rummel, R., M. van Gelderen, R. Koop, E. Schrama, F. Sansò, M. Brovelli, F. Migiliaccio, and F. Sacerdote (1993), Spherical harmonic analysis of satellite gradiometry, Publications on Geodesy, Delft, 39, 120 pp.

  • Simons, F.J., F.A. Dahlen, and M.A. Wieczorek (2006), Spatiospectral concentration on a sphere, SIAM Rev. 48, 3, 504–536, DOI: 10.1137/S0036144504445765.

    Article  Google Scholar 

  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, and F. Wang (2005), GGM02-An improved Earth gravity field model from GRACE, J. Geodesy 79, 8, 467–478, DOI: 10.1007/s00190-005-0480-z.

    Article  Google Scholar 

  • Tscherning, C.C. (1988), A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements, DGK, Reihe B, Heft 287 (Festschrift R. Sigl), 218–223.

  • Tscherning, C.C. (1989), A local study of the influence of sampling rate, number of observed components and instrument noise on 1 deg. mean geoid and gravity anomalies determined from satellite gravity gradiometer measurements, Ri. Geod. Topo. Foto. 5, 139–146.

    Google Scholar 

  • Tscherning, C. C. (1993), Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame, Manuscr. Geodaet. 18, 115–123.

    Google Scholar 

  • Tscherning, C.C., R. Forsberg, and M. Vermeer (1990), Methods for regional gravity field modelling from SST and SGG data, Reports of the Finnish Geodetic Institute, No. 90:2, 17 pp.

  • Van Gelderen, M., and R. Rummel (2001), The solution of the general geodetic boundary value problem by least-squares, J. Geodesy 75, 1, 1–11, DOI: 10.1007/s001900000146.

    Article  Google Scholar 

  • Van Gelderen, M., and R. Rummel (2002), Corrections to “The solution of the general geodetic boundary value problem by least squares”, J. Geodesy 76, 2, 121–122, DOI: 10.1007/s00190-001-0229-2.

    Article  Google Scholar 

  • Varshalovich, D.A., A.N. Moskalev, and V.K. Khersonskii (1989), Quantum Theory of Angular Momentum, World Scientific Publ., Singapore.

    Google Scholar 

  • Xu, P. (1992), Determination of surface gravity anomalies using gradiometric observables, Geophys. J. Int. 110, 2, 321–332, DOI: 10.1111/j.1365-246X. 1992.tb00877.x.

    Article  Google Scholar 

  • Xu, Y.L. (1996), Fast evaluation of the Gaunt coefficients, Math. Com. 65, 1601–1612, DOI: 10.1090/S0025-5718-96-00774-0.

    Article  Google Scholar 

  • Xu, P. (1998), Truncated SVD methods for discrete linear ill-posed problems, Geophys. J. Int. 135, 2, 505–514, DOI: 10.1046/j.1365-246X.1998.00652.x.

    Article  Google Scholar 

  • Xu, P. (2009), Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems, Geophys. J. Int. 179, 1, 182–200, DOI: 10.1111/j.1365-246X.2009.04280.x.

    Article  Google Scholar 

  • Xu, P., and R. Rummel (1994), A simulation study of smoothness methods in recovery of regional gravity fields, Geophys. J. Int. 117, 2, 472–486, DOI: 10.1111/j.1365-246X.1994.tb03945.x.

    Article  Google Scholar 

  • Zieliński, J.B. (1975), Solution of the downward continuation problem by collocation, Bull. Geod. 117, 1, 267–277, DOI: 10.1007/BF02521622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eshagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshagh, M. On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys. 59, 29–54 (2011). https://doi.org/10.2478/s11600-010-0033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0033-6

Key words

Navigation