Skip to main content

Advertisement

Log in

Solar forcing on antarctic terrestrial climate: A study by means of GPS observations

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

With a view to difficulties with explaining the physical mechanism of solar forcing on the Earth’s climate, we applied a new approach of determining and quantifying an influence of solar-related events on water vapor variability by correlating the total electron content (TEC) and precipitable water vapor (PWV), both derived from ground-based GPS observations.

In this study, ionospheric TEC and atmospheric PWV values are employed as solar activity and terrestrial climate parameters, respectively. Three-year GPS data at five stations in Antarctica are analyzed on a daily mean basis. Results show significant correlation between TEC and PWV differences during storms-affected days. The high correlation between the daily mean values of TEC and PWV, both of which follow the seasonal signals and subsisting downward trend, suggests an influence of solar activity on climate variability in Antarctica. These quantities are determined by changes of the upper-atmosphere level, which varies in conformity with the zenith angle of the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Rashid, Z.A., M.A. Momani, S. Sulaiman, M.A. Mohd Ali, B. Yatim, G. Fraser, and N. Sato (2006), GPS ionospheric TEC measurement during the 23rd November 2003 total solar eclipse at Scott Base Antarctica, J. Atmos. Sol.-Terr. Phys. 68,11, 1219–1236, DOI: 10.1016/j.jastp.2006.03.006.

    Article  Google Scholar 

  • Alber, C., R. Ware, C. Rocken, and F. Solheim (1997), GPS surveying with 1 mm precision using corrections for atmospheric slant path delay, Geophys. Res. Lett. 24,15, 1859–1862, DOI: 10.1029/97GL01877.

    Article  Google Scholar 

  • Ataç, T., and Özgüç A. (1996), North-south asymmetry in the solar flare index, Solar Physics 166,1, 201–208.

    Article  Google Scholar 

  • Baker, D.N., N.E. Turner, and T.I. Pulkkinen (2001), Energy transport and dissipation in the magnetosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys. 63,5, 421–429, DOI: 10.1016/S1364-6826(00)00169-3.

    Article  Google Scholar 

  • Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res. 97,D14, 15,787–15,801.

    Google Scholar 

  • Businger, S., S.R. Chiswell, M. Bevis, J. Duan, R.A. Anthes, C. Rocken, R.H. Ware, M. Exner, T. van Hove, and F.S. Solheim (1996), The promise of GPS in atmospheric monitoring, Bull. Am. Meteor. Soc. 77, 5–18.

    Article  Google Scholar 

  • Duan, J., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S. Businger, C. Rocken, F. Solheim, T. van Hove, R. Ware, S. McClusky, T.A. Herring, and R.W. King (1996), GPS meteorology: Direct estimation of the absolute value of precipitable water, J. Appl. Meteorol. 35,6, 830–838.

    Article  Google Scholar 

  • Friis-Christensen, E., and K. Lassen (1991), Length of the solar cycle: an indicator of solar activity closely associated with climate, Science 254, 698–700, DOI: 10.1126/science.254.5032.698.

    Article  Google Scholar 

  • Fröhlich, C., and J. Lean (1998), The sun’s total irradiance: Cycles, trends, and related climate change uncertainties since 1976, Geophys. Res. Lett. 25,23, 4377–4380.

    Article  Google Scholar 

  • Gleisner, H., and P. Thejll (2003), Patterns of tropospheric response to solar variability, Geophys. Res. Lett. 30,13, 1711, DOI: 10.1029/2003GL017129.

    Article  Google Scholar 

  • Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas (1994), What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792.

    Article  Google Scholar 

  • Hathaway, D.H., and R.M. Wilson (2004), What the sunspot record tells us about space climate, Solar Phys. 224, 5–19.

    Article  Google Scholar 

  • Klobuchar, J.A., and J.M. Kunches (2003), Comparative range delay and variability of the earth’s troposphere and the ionosphere, GPS Solutions 7,1, 55–58, DOI: 10.1007/s10291-003-0047-5.

    Google Scholar 

  • Labitzke, K., and H. van Loon (1992), Association between the 11-year solar cycle and the atmosphere. Part V: Summer, J. Climate 5, 240–251.

    Article  Google Scholar 

  • Marsh, N.D., and H. Svensmark (2000), Low cloud properties influenced by cosmic rays, Phys. Rev. Lett. 85, 5004–5007, DOI: 10.1103/PhysRevLett.85.5004.

    Article  Google Scholar 

  • Rishbeth, H. (1997), Long-term changes in the ionosphere, Adv. Space Res. 20,11, 2149–2155, DOI: 10.1016/S0273-1177(97)00607-8.

    Article  Google Scholar 

  • Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger (1993), Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett. 20,23, 2631–2634, DOI: 10.1029/93GL02935.

    Article  Google Scholar 

  • Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan (1999), Solar cycle variability, ozone, and climate, Science 284,5412, 305–308, DOI:10.1126/science.284.5412.305.

    Article  Google Scholar 

  • Suparta, W., Z.A. Abdul Rashid, M.A. Mohd Ali, B. Yatim, and G.J. Fraser (2008), Observations of Antarctic precipitable water vapor and its response to the solar activity based on GPS sensing, J. Atmos. Sol.-Terr. Phys. 70, 1419–1447. DOI: 10.1016/j.jastp.2008.04.006.

    Article  Google Scholar 

  • Suparta, W., M.A. Mohd Ali, B. Yatim, and J.G. Fraser (2009), Analysis of GPSsensed atmospheric water vapor variability and its response to the terrestrial winds over Antarctica, Physics and Chemistry of the Earth 34,1–2, 72–87, DOI: 10.1016/j.pce.2008.07.010.

    Google Scholar 

  • Tobiska, W.K. (2001), Validating the solar EUV proxy, E10.7, J. Geophys. Res. 106,A12, 29,969–29,978.

    Article  Google Scholar 

  • Tsurutani, B.T., A.J. Mannucci, B. Iijima, F.L. Guarnieri, W.D. Gonzalez, D.L. Judge, P. Gangopadhyay, and J. Pap (2006), The extreme Halloween 2003 solar flares (and Bastille Day, 2000 Flare), ICMEs, and resultant extreme ionospheric effect: A review, Adv. Space Res. 37,8, 1583–1588, DOI:10.1016/j.asr.2005.05.114.

    Article  Google Scholar 

  • Van Lipzig, N.P.M., E. van Meijgaard, and J. Oerlemans (2002), Temperature sensitivity of the Antarctic Surface Mass Balance in a regional atmospheric climate model, J. Climate 15,19, 2758–2774, DOI: 10.1175/1520-0442 (2002)015〈2758:TSOTAS〉2.0.CO;2.

    Article  Google Scholar 

  • Vey, S., R. Dietrich, K.-P. Jonhsen, J. Miao, and G. Heygster (2004), Comparison of tropospheric water vapor over Antarctica derived from AMSU-B data, Ground-Based GPS data and the NCEP/NCAR reanalysis, J. Meteorol. Soc. Jpn. 82,1B, 259–267, DOI: 10.2151/jmsj.2004.259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayan Suparta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suparta, W., Yatim, B. & Mohd Ali, M.A. Solar forcing on antarctic terrestrial climate: A study by means of GPS observations. Acta Geophys. 58, 374–391 (2010). https://doi.org/10.2478/s11600-009-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0035-4

Key words

Navigation