Skip to main content
Log in

Genotoxicity of barley stripe mosaic virus in infected host plants

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

A comparative study of the effect of barley stripe mosaic virus (BSMV) and gamma irradiation on mitotic divisions in barley (Hordeum vulgare L.) roots was performed by evaluating the mitotic index (MI), micronucleus (MN) frequency and sister chromatid exchanges (SCE). Results indicate that, similarly to gamma irradiation at doses of 100, 150 and 250 Gy, BSMV reduces the mitotic activity, increases the micronucleus frequency and the rate of SCE and promotes the formation of C-metaphases. In root meristematic cells of the three barley cultivars studied (Galactic, Sonor and Unirea), the mitotic index of infected plants was found to be 52.5, 54.48 and 64.17%, respectively, lower than the uninfected control. An increase in frequency of sister chromatid exchanges was observed in all the experimental variants. In treatments involving viral infection alone or in combination with gamma irradiation chromosomes with three and more chromatid exchanges were observed, while their percentage in the control or in treatments with gamma irradiation alone was reduced. The results of the study indicate that in plants derived from irradiated seeds, BSMV produces an effect that is correlated nonlinearly with the radiation dose applied. Cytological analysis of mitotic divisions in barley roots revealed the genotoxicity of BSMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maluszynska J., Juchimiuk J., Plant genotoxicity: a molecular cytogenetic approach in plant bioassays, Arh. Hig. Rada Toksikol., 2005, 56, 177–184

    PubMed  Google Scholar 

  2. Kozak M.F., The mitotic rhythms in representatives of soybean Glycine L., Cytologiâ i Genetika, 2004, 38, 7–12, (in Russian)

    Google Scholar 

  3. Tucker J.D., Auletta A., Cimido M.C., Dearfield K.L., Jacobson-Kram D., Tice R.R., et al., Sister chromatid exchange: second report of the Gene-Tox Program, Mutat. Res., 1993, 297, 101–180

    PubMed  CAS  Google Scholar 

  4. Ivanov V.B., Cell proliferation in plants, Itogy nauki i tekhniki, Ser. Tsitologia, VINITI, Moscow, 1987, (in Russian)

    Google Scholar 

  5. Dmitrieva S.A., Minnibaeva F.V., Gordon L.Kh., Mitotic index of meristematic cells and growth of Pisum sativum roots exposed to modulators of the inositol series, Cytologiâ, 2006, 48, 475–479, (in Russian)

    CAS  Google Scholar 

  6. Singh P., Srivastava A.K., Singh A., Cell Cycle Stage Specific Application of Cypermethrin and Carbendazim to Assess the Genotoxicity in Somatic Cells of Hordeum vulgare L., Bull. Environ. Contam. Toxicol., 2008, 81, 258–261

    Article  PubMed  CAS  Google Scholar 

  7. Sandfaer J., Barley stripe mosaic virus and the frequency of triploids and aneuploids in barley, Genetics, 1973, 73, 597–603

    PubMed  CAS  Google Scholar 

  8. Linde-Laursen I., Siddiqui K.A., Triploidy and aneuploidy in virus infected wheat, Triticum aestivum, Hereditas, 1974, 76, 152–154

    Article  CAS  Google Scholar 

  9. Kovalchuk I., Kovalciuc O., Kalck V., Boyko V., Filkowski J., Heinlein M., et al., Pathogen-induced systemic plant signal triggers DNA rearrangements, Nature, 2003, 423, 760–762

    Article  PubMed  CAS  Google Scholar 

  10. Boyko A., Kathiria P., Zemp F.J., Yao Y., Pogribny I., Kovalchuk I., Transgenerational changes in the genome stability and methylation in pathogeninfected plants (Virus-induced plant genome instability), Nucl. Acids Res., 2007, 35, 1714–1725

    Article  PubMed  CAS  Google Scholar 

  11. Lucht J.M., Mauch-Mani B., Steiner H.Y., Metraux J.P., Ryals J., Hohn B., Pathogen stress increases somatic recombination frequency in Arabidopsis, Nat. Genet., 2002, 30, 311–314

    Article  PubMed  Google Scholar 

  12. Milne R.G., Lesemann D.-E., Immunosorbent electron microscopy in plant virus studies, Meth. Virol., 1984, 8, 85–101

    Google Scholar 

  13. Panda K.K., Patra J., Panda B.B., Induction of sister chromatid exchanges by heavy metal salts in root meristem cells of Allium cepa, Biol. Plantarum, 1996, 38, 555–561

    Article  CAS  Google Scholar 

  14. Clewer A.G., Scarisbrick D.H., Practical statistics and experimental design for plant and crop science, John Wiley & Sons Ltd., Chichester, 2001

    Google Scholar 

  15. Il’inskikh N.N., Micronucleus analysis and cytogenetic instability, Tomsk University Press, 1992, (in Russian)

  16. El-Ghamery A.A., El-Nahas A.I., Mansour M.M., The action of atrazine herbicide as an indicator of cell division on chromosomes and nucleic acids content in root meristems of A. cepa and V. faba, Cytologia, 2000, 65, 277–287

    CAS  Google Scholar 

  17. Landis W.G., Gorsuch J.W., Hughes J.S., Anthony M.L., (Eds.), Environmental toxicology and risk assessment, vol. 2, Gorsuch, Dwyer, Ingersoll, La Point, 1993

    Book  Google Scholar 

  18. Mayhew D.E., Carroll T.W., Barley Stripe Mosaic Virions Associated with Spindle Microtubules, Science, 1974, 185, 957–958

    Article  PubMed  CAS  Google Scholar 

  19. Bozsakyová E., Wsólová L., Chalupa I., Spontaneous and gamma-ray-induced sister chromatid exchanges in patients with carcinoma of cervix uteri, Int. J. Radiat. Biol., 2005, 81, 177–185

    Article  PubMed  CAS  Google Scholar 

  20. Ucur A., Palanduz S., Cefle K., Ozturk S., Tutkan G., Vatansever S., et al., Sister chromatid exchange and mitotic index in patients with cirrhosis related to hepatitis B and C viruses and in chronic carriers, Hepato-Gastroenterology, 2003, 50, 2137–2140

    PubMed  Google Scholar 

  21. Yi H., Lui J., Zheng K., Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley, Ecotox. Envir. Safe., 2005, 62, 421–426

    Article  CAS  Google Scholar 

  22. Sang N., Xin X., Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulgare, Ecotox. Envir. Safe., 2006, 63, 469–473

    Article  CAS  Google Scholar 

  23. Butorina A.K., Do Niû Tien, The circadian mitotic rhythms in mung bean Vigna radiata (L.) R.Wilczek, Cytologiâ, 2008, 50, 729–733, (in Russian)

    CAS  Google Scholar 

  24. Pandey R.M., Cytotoxic effects of pesticides in somatic cells of Vicia faba L., Tsitologia i Genetika, 2008, 42, 13–18

    CAS  Google Scholar 

  25. Hidalgo A., Gonzalez-Reyes J.A., Navas P., Garcia-Herdugo G., Abnormal mitosis and growth inhibition in Allium cepa root induced by propham and chloropropham, Cytobios, 1989, 57, 7–14

    CAS  Google Scholar 

  26. Sudhakar R., Ninge Gowda K.H., Venu G., Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa, Cytologia, 2001, 66, 235–239

    Google Scholar 

  27. Schneidermann M.H., Dewey W.C., Highfield D.P., Inhibition of DNA synthesis in synchronized Chinese hamster cell treated in G1 with cycloheximide, Exp. Cell Res., 1971, 67, 147–155

    Article  Google Scholar 

  28. Kihlman B.A., Kronborg D., Sister chromatid exchange in Vicia faba. I. Demonstration by a modified fluorescent plus Giemsa (FPG) technique, Chromosoma, 1975, 51, 1–10

    Article  Google Scholar 

  29. Perry P., Wolff S., New Giemsa method for the differential staining of sister chromatids, Nature, 1974, 251, 156–158

    Article  PubMed  CAS  Google Scholar 

  30. Wolff S., Bodycote J., Painter R.B., Sister chromatid exchanges induced in Chinese hamster cells by U.V. irradiation at different stages of cell cycle: the necessity for cell to pass through S, Mutat. Res., 1974, 25, 73–81

    Article  PubMed  CAS  Google Scholar 

  31. Ishii Y., Bender M., Effects of inhibitors of DNA synthesis on spontaneous and ultraviolet lightinduced sister-chromatid exchanges in Chinese hamster cells, Mutat. Res., 1980, 79, 19–32

    Article  PubMed  CAS  Google Scholar 

  32. Kato H., Mechanisms of sister chromatid exchanges and the relation to production of chromosomal aberrations, Chromosoma, 1977, 59, 179–191

    Article  PubMed  CAS  Google Scholar 

  33. Painter R.B., A replication model for sister-chromatid exchange, Mutat. Res., 1980, 70, 337–341

    PubMed  CAS  Google Scholar 

  34. Dong Z., Fasullo M., Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes, Nucl. Acids Res., 2003, 31, 2576–2585

    Article  PubMed  CAS  Google Scholar 

  35. Wilson D.M., Thompson L., Molecular mechanisms of sister-chromatid exchange, Mutat. Res., 2007, 616, 11–23

    PubMed  CAS  Google Scholar 

  36. Andronic L., Study of the mutagenic effect of viral infection based on the analysis of sister chromatid exchanges, Proceedings of National Conference on genetics, biotechnology and crop improvement, (17–18 February, 2005, Chisinau), 2005, 17–20, (in Romanian)

  37. Bujoreanu V., Chiriac Gh., Plant viruses as possible inducers of genotypic variability in plants, Proceedings of National Conference on genetics, biotechnology and crop improvement, (9–10 November, 1994, Chisinau), 1994, 8–10, (in Romanian)

  38. Chiriac Gh.I., Andronic L., Bujoreanu V.V., Marii L., Features of crossing-over in virus-infected tomato, Cent. Eur. J. Biol., 2006, 1, 386–398

    Article  Google Scholar 

  39. Mock R.J., Stokes I.E., Jullesfie A.J., Effect of sugarcane mosaic virus infection in parental stock on panicle and seed production of virus-free F2 progeny in Sorghum (Sorghum bicolor), Plant Dis., 1985, 69, 310–312

    Google Scholar 

  40. Yukhimenco A.I., Voloshchuk S.I., Girco V.S., Winter wheat viruses as biological stress factors inducing genetic variation, Proceedings of 11th congress of the federation of European societies of plant physiology, (7–11 September 1998, Varna, Bulgaria), Bulgarian J. Plant. Physiol., 1988, 222

  41. Nemčinov L.G., Genetic variability in maize under conditions of viral pathogenesis, PhD thesis, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Republic of Belarus, 1990, (in Russian)

    Google Scholar 

  42. Geraskin S., Oudalova A., Kim J., Dikarev V., Dikareva N., Cytogenetic effect of low dose gammaradiation in Hordeum vulgare seedlings: non-linear dose-effect relationship, Radiat. Environ. Bioph., 2007, 46, 31–41

    Article  Google Scholar 

  43. Rogakou E.P., Boon C., Redon C., Bonner W.M., Megabase chromatin domains involved in DNA double-strand breaks in vivo, J. Cell. Biol., 1999, 146, 905–916

    Article  PubMed  CAS  Google Scholar 

  44. Liu Q., Guntuku S., Cui X.S., Matsuoka S., Cortez D., Tamai K., et al., Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint, Gene Dev., 2000, 14, 1448–1459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa I. Andronic.

About this article

Cite this article

Andronic, L.I., Jacota, A.G., Bujoreanu, V.V. et al. Genotoxicity of barley stripe mosaic virus in infected host plants. cent.eur.j.biol. 5, 633–640 (2010). https://doi.org/10.2478/s11535-010-0048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-010-0048-7

Keywords

Navigation