Skip to main content
Log in

Analysis of football player’s motion in view of fractional calculus

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem (i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Figueroa, N.J. Leite, R.M.L. Barros, Comput. Vis. Image Und. 101, 122 (2006)

    Article  Google Scholar 

  2. M.D. Hughes, R.M. Bartlett, J. Sport. Sci. 20, 739 (2002)

    Article  Google Scholar 

  3. I.M. Franks, D. Goodman, J. Sport. Sci. 4, 49 (1986)

    Article  Google Scholar 

  4. C. Carling, A.M. Williams, T. Reilly, Handbook of Soccer Match Analysis: A Systematic Approach to Improving Performance (Taylor and Francis Group, London and New York, 2005)

    Book  Google Scholar 

  5. J. Gudmundsson, T. Wolle, In Proceedings of the 20th International Conference on Advances in Geographic Information Systems (New York, NY, USA, 2012)

    Google Scholar 

  6. J.D. Allen et al., J. Hum. Movement Stud. 34, 1 (1998)

    Google Scholar 

  7. V. Di Salv et al., Int. J. Perform. Anal. Sport 6, 108 (2006)

    Google Scholar 

  8. F.M. Clemente, M.S. Couceiro, F.M.L. Martins, Indian J. Sci. Tech. 5, 3792 (2012)

    Google Scholar 

  9. A. Baca, et al., J. Sport Sci. 27, 1335 (2009)

    Article  Google Scholar 

  10. R.M.L. Barros et al., J. Sport. Sci. Med. 6, 233 (2007)

    Google Scholar 

  11. J. Ohashi et al., In Science and Football (E and FN Spon, London, 1988) 434

    Google Scholar 

  12. C. Carling et al., Sports Med. 38, 839 (2008)

    Article  Google Scholar 

  13. J. Liu et al., Pattern Recogn. Lett. 30, 103 (2009)

    Article  ADS  Google Scholar 

  14. H. Kataoka, Y. Aoki, In SICE Annual Conference (Yokohama, Japan, 2011)

    Google Scholar 

  15. T. D’Orazio, M. Leo, Pattern Recognition, 43, 2911 (2010)

    Article  Google Scholar 

  16. R. Duarte et al., Medicina (Kaunas) 46, 408 (2010)

    MathSciNet  Google Scholar 

  17. O. Fernandes et al., Int. J. Sport Psychol. 41, 63 (2010)

    Google Scholar 

  18. R. Duarte et al., Hum. Movement Sci. 31, 1639 (2012)

    Article  Google Scholar 

  19. V. Di Salvo et al., Int. J. Sports Med. 28, 222 (2007)

    Article  Google Scholar 

  20. P.M. McGinnis, Biomechanics of Sport and Exercise (IL: Human Kinetics, Champaign, 1999)

    Google Scholar 

  21. M.S. Couceiro et al., Signal, Image and Video Processing 6, 437 (2012)

    Article  Google Scholar 

  22. M.S. Couceiro et al., In 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences: ICNPAA 2012 (Vienna, Austria, 2012)

    Google Scholar 

  23. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus — Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  24. J.F. Gréhaigne, D. Bouthier, B. David, J. Sport. Sci. 15, 137 (1997)

    Article  Google Scholar 

  25. J.A.T. Machado et al., Math. Probl. Eng. 1, 34 (2010)

    Google Scholar 

  26. P.W. Ostalczyk, Phys. Scripta T136, 1 (2009)

    Google Scholar 

  27. G.E. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations (Prentice Hall Professional Technical Reference, 1977)

    Google Scholar 

  28. R.P. Brent, Algorithms for minimization without derivatives (NJ: Prentice-Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  29. Y. Abdel-Aziz, H. Karara, In ASP symposium on closerange photogrammetry (Falls Church, VA, 1971)

    Google Scholar 

  30. S.P. Chan, In Industrial and Engineering Applications Artificial Intelligence and Expert Systems (Georgia, USA, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe M. Clemente.

About this article

Cite this article

Couceiro, M.S., Clemente, F.M. & Martins, F.M.L. Analysis of football player’s motion in view of fractional calculus. centr.eur.j.phys. 11, 714–723 (2013). https://doi.org/10.2478/s11534-013-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0258-5

Keywords

Navigation