Skip to main content
Log in

Secant tree calculus

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Désiré André, Développement de sec x et tan x, C. R. Math. Acad. Sci. Paris, 88 (1879), 965–979.

    MATH  Google Scholar 

  2. Désiré André, Sur les permutations alternées, J. Math. Pures et Appl., 7 (1881), 167–184.

    MATH  Google Scholar 

  3. Louis Comtet, Advanced Combinatorics, D. Reidel/Dordrecht-Holland, Boston, 1974.

    Book  MATH  Google Scholar 

  4. R.C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Arch. Wisk., 14 (1966), 241–246.

    MATH  MathSciNet  Google Scholar 

  5. Dominique Foata; Guo-Niu Han, The doubloon polynomial triangle, Ramanujan J., 23(2010), 107–126 (The Andrews Festschrift).

    Article  MATH  MathSciNet  Google Scholar 

  6. Dominique Foata; Guo-Niu Han, Doubloons and q-secant numbers, Münster J. of Math., 3(2010), 129–150.

    MathSciNet  Google Scholar 

  7. Dominique Foata; Guo-Niu Han, Doubloons and new q-tangent numbers, Quarterly J. Math., 62(2011), 417–432.

    Article  MATH  MathSciNet  Google Scholar 

  8. Dominique Foata; Guo-Niu Han, Finite difference calculus for alternating permutations, J. Difference Equations and Appl., 19(2013), 1952–1966.

    Article  MATH  MathSciNet  Google Scholar 

  9. Dominique Foata; Guo-Niu Han, Tree Calculus for Bivariate Difference Equations, J. Difference Equations and Appl., 2014, to appear, 36 pages.

    Google Scholar 

  10. Markus Fulmek, A continued fraction expansion for a q-tangent function, Sém. Lothar. Combin., B45b(2000), 3pp.

  11. Yoann Gelineau; Heesung Shin; Jiang Zeng, Bijections for Entringer families, Europ. J. Combin., 32(2011), 100–115.

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo-Niu Han; Arthur Randrianarivony; Jiang Zeng, Un autre q-analogue des nombres d’Euler, The Andrews Festschrift. Seventeen Papers on Classical Number Theory and Combinatorics, D. Foata, G.-N. Han eds., Springer-Verlag, Berlin Heidelberg, 2001, pp. 139–158. Sém. Lothar. Combin., Art. B42e, 22 pp.

    Google Scholar 

  13. Charles Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939.

    Google Scholar 

  14. M. Josuat-Vergès, A q-enumeration of alternating permutations, Europ. J. Combin., 31(2010), 1892–1906.

    Article  MATH  Google Scholar 

  15. Sergey Kitaev; Jeffrey Remmel, Quadrant Marked Mesh Patterns in Alternating Permutations, Sém. Lothar. Combin., B68a (2012), 20pp.

  16. A. G. Kuznetsov; I. M. Pak; A. E. Postnikov, Increasing trees and alternating permutations, Uspekhi Mat. Nauk, 49(1994), 79–110.

    MATH  MathSciNet  Google Scholar 

  17. Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, Gauthier-Villars, 1923.

    Google Scholar 

  18. Christiane Poupard, De nouvelles significations énumératives des nombres d’Entringer, Discrete Math., 38(1982), 265–271.

    Article  MATH  MathSciNet  Google Scholar 

  19. Christiane Poupard, Deux propriétés des arbres binaires ordonnés stricts, Europ. J. Combin., 10(1989), 369–374.

    Article  MATH  MathSciNet  Google Scholar 

  20. Christiane Poupard, Two other interpretations of the Entringer numbers, Europ. J. Combin., 18(1997), 939–943.

    Article  MATH  MathSciNet  Google Scholar 

  21. Helmut Prodinger, Combinatorics of geometrically distributed random variables: new q-tangent and q-secant numbers, Int. J. Math. Math. Sci., 24(2000), 825–838.

    Article  MATH  MathSciNet  Google Scholar 

  22. Helmut Prodinger, A Continued Fraction Expansion for a q-Tangent Function: an Elementary Proof, Sém. Lothar. Combin., B60b (2008), 3 pp.

  23. Richard P. Stanley, A Survey of Alternating Permutations, in Combinatorics and graphs, 165–196, Contemp. Math., 531, Amer. Math. Soc. Providence, RI, 2010.

    Chapter  Google Scholar 

  24. Heesung Shin; Jiang Zeng, The q-tangent and q-secant numbers via continued fractions, Europ. J. Combin., 31(2010), 1689–1705.

    Article  MATH  MathSciNet  Google Scholar 

  25. Xavier G. Viennot, Séries génératrices énumératives, chap. 3, Lecture Notes, 160 p., 1988, notes de cours donnés à l’École Normale Supérieure Ulm (Paris), UQAM (Montréal, Québec) et Université de Wuhan (Chine) http://web.mac.com/xgviennot/Xavier_Viennot/cours.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Foata.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foata, D., Han, GN. Secant tree calculus. centr.eur.j.math. 12, 1852–1870 (2014). https://doi.org/10.2478/s11533-014-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0429-7

MSC

Keywords

Navigation