Skip to main content
Log in

Discrete maximum principle for interior penalty discontinuous Galerkin methods

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

A class of linear elliptic operators has an important qualitative property, the so-called maximum principle. In this paper we investigate how this property can be preserved on the discrete level when an interior penalty discontinuous Galerkin method is applied for the discretization of a 1D elliptic operator. We give mesh conditions for the symmetric and for the incomplete method that establish some connection between the mesh size and the penalty parameter. We then investigate the sharpness of these conditions. The theoretical results are illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Rankin R., Technical Note: A note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes, Numer. Methods Partial Differential Equations, 2012, 28(3), 1099–1104

    Article  MathSciNet  Google Scholar 

  2. Arnold D.N., Brezzi F., Cockburn B., Marini L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 2001/02, 39(5), 1749–1779

    Article  MathSciNet  Google Scholar 

  3. Berman A., Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Comput. Sci. Appl. Math., Academic Press, New York-London, 1979

    MATH  Google Scholar 

  4. Ciarlet P.G., Discrete maximum principle for finite-difference operators, Aequationes Math., 1970, 4(3), 338–352

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet P.G., Raviart P.-A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 1973, 2, 17–31

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Pietro D.A., Ern A., Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin), 69, Springer, Heidelberg, 2012

    Google Scholar 

  7. Ern A., Guermond J.-L., Theory and Practice of Finite Elements, Appl. Math. Sci., 159, Springer, New York, 2004

    Google Scholar 

  8. Evans L.C., Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, 1997

    Google Scholar 

  9. Faragó I., Horváth R., A review of reliable numerical models for three-dimensional linear parabolic problems, Internat. J. Numer. Methods Engrg., 2007, 70(1), 25–45

    Article  MathSciNet  MATH  Google Scholar 

  10. Hannukainen A., Korotov S., Vejchodský T., On weakening conditions for discrete maximum principles for linear finite element schemes, In: Numerical Analysis and its Applications, Lozenetz, June 16–20, 2008, Lecture Notes in Comput. Sci., 5434, Springer, Berlin-Heidelberg, 2009, 297–304

    Chapter  Google Scholar 

  11. Houston P., Süli E., Wihler T.P., A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs, IMA J. Numer. Anal., 2008, 28(2), 245–273

    Article  MathSciNet  MATH  Google Scholar 

  12. Höhn W., Mittelmann H.-D., Some remarks on the discrete maximum-principle for finite elements of higher order, Computing, 1981, 27(2), 145–154

    Article  MathSciNet  Google Scholar 

  13. Mincsovics M.E., Horváth T.L., On the differences of the discrete weak and strong maximum principles for elliptic operators, In: Large-Scale Scientific Computing, Sozopol, June 6–10, 2011, Lecture Notes in Comput. Sci., 7116, Springer, Berlin-Heidelberg, 2012, 614–621

    Chapter  Google Scholar 

  14. Rivière B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers Appl. Math., 35, Society for Industrial and Applied Mathematics, Philadelphia, 2008

    Google Scholar 

  15. Ruas Santos V., On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1982, 29(2), 473–491

    MathSciNet  MATH  Google Scholar 

  16. Vejchodský T., Discrete Maximum Principles, habilitation thesis, Institute of Mathematics of the Academy of Sciences and Faculty of Mathematics and Physics, Charles University, Prague, 2011

    Google Scholar 

  17. Vejchodský T., Šolín P., Discrete maximum principle for higher-order finite elements in 1D, Math. Comp., 2007, 76(260), 1833–1846

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás L. Horváth.

About this article

Cite this article

Horváth, T.L., Mincsovics, M.E. Discrete maximum principle for interior penalty discontinuous Galerkin methods. centr.eur.j.math. 11, 664–679 (2013). https://doi.org/10.2478/s11533-012-0154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0154-z

MSC

Keywords

Navigation