Skip to main content
Log in

Near-infrared spectroscopy extended with indocyanine green dye dilution for cerebral blood flow measurement: Median values in healthy volunteers

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

The cerebral blood flow (CBF) is an important vital parameter in neurointensive care. Currently, there is no non-invasive method for its measurement that can easily be applied at the bedside. A new tool to determine CBF is based on near-infrared spectroscopy (NIRS) applied together with indocyanine green (ICG) dye dilution. From a bilateral measurement on selected regions on the head of infrared (IR) absorption at various wavelengths during the dilution maneuver, the vascular perfusion characteristics of the two brain hemispheres can be determined in terms of mean transit time (mtt) of ICG, cerebral blood volume (CBV) and CBF.

So far, on nine healthy volunteers, NIRS ICG dye dilution bihemispheric measurements were performed, which yielded to mtt given as median (range) of 9.3 s (5.1–16.3 s), CBV of 3.5 ml/100 g (1.7–4.1 ml/100 g), and CBF of 18.2 ml/(100 g×min) [11.1–48.6 ml/(100 g×min)]. Additionally, the blood flow index (BFI) was calculated with BFI= 13.8 mg/(100 g×s) [6.6–15.2 mg/(100 g×s)]. The Spearman rank correlation coefficient between CBF and BFI was RS = 0.76. However, as the Bland & Altman plot between CBFNIRS and the CBFBFI documents, the limits of agreement are rather wide (21.9±6.7). Under physiological conditions in healthy volunteers, no differences could be detected between the hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Terborg, S. Bramer, S. Harchser, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green”, J. Neurol. Neurosur. Ps. 75, 38–42 (2004).

    Google Scholar 

  2. H. Obrig and A. Villringer, “Beyond the visible-imaging the human brain with light”, J. Cerebr. Blood F. Met. 23, 1–18 (2003).

    Article  Google Scholar 

  3. D.R. Hargroves, R.C. Tallis, V.M. Pomeroy, and A. Bhalla, “Near-infrared spectroscopy in stroke: from research to clinical practice”, Stroke 35, 70–72 (2004).

    Article  Google Scholar 

  4. A.D. Edwards, J.S. Wyatt, C. Richardson, D.T. Deply, M. Cope, and E.O. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy”, Lancet 2, 770–771 (1988).

    Article  Google Scholar 

  5. C.E. Elwell, M. Cope, A.D. Edwards, E.O. Reynolds, and D.T. Delpy, “Measurement of cerebral blood flow in adult humans using near infrared spectroscopy-methodology and possible errors”, Adv. Exp. Med. Biol. 317, 235–245 (1992).

    Google Scholar 

  6. I. Roberts, P. Fallon, F. Kirkham, A. Lloyd-Thomas, C. Cooper, R. Maynrad, M. Elliott, and A.D. Edwards, “Estimation of cerebral blood flow with near infrared spectroscopy and indocyanine green”, Lancet 342, 1425 (1993).

    Article  Google Scholar 

  7. P. Hopton, T.S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination”, J. Appl. Physiol. 87, 1981–1987 (1999).

    Google Scholar 

  8. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A.D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green”, Pediatr. Res. 43, 134–139 (1998).

    Article  Google Scholar 

  9. I.J. Fox, L.G.S. Brooker, D.W. Heseltine, and E.H. Wood, “A new dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation (abstract)”, Circulation 14, 937–938 (1956).

    Google Scholar 

  10. C.M. Levy, S.W. Stein, G.R. Cherrick, and C.S. Davidson, “Indocyanine green clearance. A test of liver excretory function”, Clin. Res. 7, 290–296 (1959).

    Google Scholar 

  11. E.C. Bradley and J.W. Barr, “Determination of blood volume using indocyanine green (cardio-green) dye”, Life Sci. 7, 1001–1007 (1968).

    Article  Google Scholar 

  12. E. Keller, H. Ishihara, A. Nadler, P. Niederer, B. Seifert, Y. Yonekawa, and K. Frei, “Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection”, J. Neurosci. Meth. 117, 23–31 (2002).

    Article  Google Scholar 

  13. I.J. Fox and E.H. Wood, “Indocyanine green: physical and physiologic properties”, Mayo Clin. Proc. 35, 732–744 (1960).

    Google Scholar 

  14. E. Keller, A. Nadler, H.G. Imhof, P. Niederer, P. Roth, and Y. Yonekawa, “New methods for monitoring cerebral oxygenation and hemodynamics in patients with subarachnoid hemorrhage”, Acta Neurochir. Suppl. 82, 87–92 (2002).

    Google Scholar 

  15. W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E. Kuhnle, M. Welte, K. Messmer, and A.E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green”, J. Cerebr. Blood F. Met. 18, 445–456 (1998).

    Article  Google Scholar 

  16. F. Gora, S. Shinde, C.E. Elwell, J.C. Goldstone, M. Cope, D.T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study”, J. Neurosurg. Anesth. 14, 218–222 (2002).

    Article  Google Scholar 

  17. E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–839 (2003).

    Article  Google Scholar 

  18. D.T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement”, Phys. Med. Biol. 33, 1433–1442 (1988).

    Article  Google Scholar 

  19. E. Okada and D.T. Delpy, “Effects of scattering of arachnoid trabeculae on light propagation in the adult brain”, Proc. OSA Biomedical Topical Meeting, 256–258 (2000).

  20. J.S. Wyatt, M. Cope, D.T. Delpy, C.E. Richardson, A.D. Edwards, S. Wray, and E.O. Reynolds, “Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy”, J. Appl. Physiol. 68, 1086–1091 (1990).

    Google Scholar 

  21. J.B. Bassingthwaighte, “Circulatory transport and the convolution integral”, Mayo Clin. Proc. 42, 137–154 (1967).

    Google Scholar 

  22. N.A. Lassen and W.A. Pearl, Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979.

    Google Scholar 

  23. M.L. Landsman, G. Kwant, G.A. Mook, and W.G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green”, J. Appl. Physiol. 40, 575–583 (1976).

    Google Scholar 

  24. Documenta Geigy Scientific Tables Basle: JR Geigy SA, 7th edition, 1970.

  25. R. Mudra, A. Nadler, E. Keller, and P. Niederer, “Analysis of near infrared spectroscopy and indocyanine green dye dilution with Monte Carlo Simulation of light propagation in the adult brain”, J. Biomed. Opt. 11, (2006).

  26. P. Smielewski, M. Czosnyka, J.D. Pickard, and P. Kirkpatrick, “Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease”, Stroke 28, 331–338 (1997).

    Google Scholar 

  27. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head”, Phys. Med. Biol. 46, 879–896 (2001).

    Article  Google Scholar 

  28. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals”, J. Biomed. Opt. 7, 464–470 (2002).

    Article  ADS  Google Scholar 

  29. R.L. Grubb Jr, M.E. Raichle, C.S. Higgins, and J.O. Eichling, “Measurement of regional cerebral blood volume by emission tomography”, Ann. Neurol. 4, 322–328 (1978).

    Article  Google Scholar 

  30. H. Ito, I. Kanno, C. Kato, T. Sasaki, K. Ishii, Y. Ouchi, A. Lida, H. Okazawa, K. Hayashida, N. Tsuyuguchi, K. Ishii, Y. Kuwabra, and M. Senda, “Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labeled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan”, Eur. J. Nucl. Med. Mol. I. 31, 635–643 (2004).

    Article  Google Scholar 

  31. A. Gupta, D. Menon, M. Czosnyka, P. Smielewski, P. Kirkpatrick, and J. Jones, “Non-invasive measurements of cerebral blood volume in volunteers”, Brit. J Anaesth. 78, 39–43 (1997).

    Google Scholar 

  32. C.E. Elwell, M. Cope, A.D. Edwards, J.S Wyatt, D.T. Delpy, and E.O. Reynolds, “Quantification of adult cerebral hemodynamics by near-infrared spectroscopy”, J. Appl. Physiol. 77, 2753–2760 (1994).

    Google Scholar 

  33. M.J. Van de Ven, W.N. Colier, M.C. van de Sluijy, D. Walraven, B. Oeseburg, and H. Folgering, “Can cerebral blood volume be measured reproducibly with an improved near infrared spectroscopy system?”, J. Cerebr. Blood F. Met. 21, 110–113 (2001).

    Article  Google Scholar 

  34. H. Owen-Reece, C.E. Elwell, J.S. Wyatt, and D.T. Delpy, “The effect of scalp ischemia on measurement of cerebral blood volume by near-infrared spectroscopy”, Physiol. Meas. 17, 279–286 (1996).

    Article  Google Scholar 

  35. K.L. Leenders, D. Perani, A.A. Lammertsma, J.D. Heather, P. Buckingham, M.J.R. Healy, J.M. Gibbs, R.J.S. Wise, J. Hatazawa, S. Herold, R.P. Beaney, D.J. Brooks, T. Spinks, C. Rodes, R.S.J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age”, Brain 113, 27–47 (1990).

    Article  Google Scholar 

  36. F. Chollet, P. Celsis, M. Clanet, B. Guiraud-Chaumeil, A. Rascol, and J. P. Marc-Vergnes, “SPECT study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks”, Stroke 20, 458–464 (1989).

    Google Scholar 

  37. S.S. Kety and C.F. Schmidt, “The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations”, Am. J. Physiol. 143, 130–136 (1945).

    Google Scholar 

  38. C. Kolbitsch, I.H. Lorenz, C. Hormann, M. Schocke, C. Kremser, F. Zschiegner, S. Felber, and A. Benzer, “The impact of increased mean airway pressure on contrast-enhanced MRI measurement of regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional mean transit time (rMTT), and regional cerebrovascular resistance (rCVR) in human volunteers”, Hum. Brain Mapp. 11, 214–222 (2000).

    Article  Google Scholar 

  39. A. Hoeft, “Dilutionstechniken und Ficksches Prinzip”, in Monitoring in Anästhesie und Intensivmedizin, pp. 246–287, Springer Verlag Berlin Heidelberg, 1998.

    Google Scholar 

  40. R.W. Stow and P.S. Hetzel, “An empirical formula for indicator-dilution curves as obtained in human beings”, J. Appl. Physiol. 7, 161–167 (1954).

    Google Scholar 

  41. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinnerberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, J. Appl. Optics, 43, 3037–3047 (2004)

    Article  ADS  Google Scholar 

  42. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinnerberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–435 (2005)

    Article  Google Scholar 

  43. J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, and W. M. Kuebler, “Relevance of depth resolution for cerebral blood flow monitroing by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass”, J. Thorac. Cardiovasc. Surg. 132, 11721178 (2006).

    Google Scholar 

  44. E. Keller, T. Steiner, J. Fandino, S. Schwab, and W. Hacke, “Jugular venous oxygen saturation thresholds in trauma patients may not extrapolate to ischemic stroke patients: lessons from a preliminary study”, J. Neurosurg. Anesth. 14, 130–136 (2002).

    Article  Google Scholar 

  45. J. Meixensberger, J. Dings, H. Kuhnigk, and K. Roosen, “Studies of Tissue PO2 in normal and pathological human brain cortex”, Acta Neurochir. (Suppl.) 59, 58–63 (1993).

    Google Scholar 

  46. E. Keller, M. Wolf, M. Martin, J. Fandino, and Y. Yonekawa, “Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyaningreen (ICG) dye dilution and near infrared spectroscopy (NIRS). A case report”, J. Neurosurg. Anesth. 13, 43–48 (2001).

    Article  Google Scholar 

  47. A. Hoeft, “Dilutionstechniken und Ficksches Prinzip”, in Monitoring in Anästhesie und Intensivmedizin, pp. 250–291, Springer Berlin, Heidelberg, New York, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mudra.

About this article

Cite this article

Mudra, R., Muroi, C., Niederer, P. et al. Near-infrared spectroscopy extended with indocyanine green dye dilution for cerebral blood flow measurement: Median values in healthy volunteers. Opto-Electron. Rev. 16, 297–308 (2008). https://doi.org/10.2478/s11772-008-0027-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-008-0027-y

Keywords

Navigation