Skip to main content
Log in

Preparation of sterically stabilized gold nanoparticles for plasmonic applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Plasmonic nanoparticles such as those of gold or silver have been recently investigated as a possible way to improve light absorption in thin film solar cells. Here, a simple method for the preparation of spherical plasmonic gold nanoparticles in the form of a colloidal solution is presented. The nanoparticle diameter is controlled in the range from several nm to tens of nm depending on the synthesis parameters with the size dispersion down to 14 %. The synthesis is based on thermal decomposition and reduction of the chloroauric acid in the presence of a stabilizing capping agent (surfactant) that is very slowly injected into the hot solvent. The surfactant prevents uncontrolled nanoparticle aggregation during the growth process. The nanoparticle size and shape depend on the type of the stabilizing agent. Surfactants with different lengths of the hydrocarbon chains such as Z-octa-9-decenylamine (oleylamine) with AgNO3 and polyvinylpyrrolidone with AgNO3 were used for the steric stabilization. Hydrodynamic diameter of the gold nanoparticles in the colloidal solution was determined by dynamic light scattering while the size of the nanoparticle metallic core was found by small-angle X-ray scattering. The UV-VIS-NIR spectrophotometer measurements revealed a plasmon resonance absorption in the 500–600 nm range. Self-assembled nanoparticle arrays on a silicon substrate were prepared by drop casting followed by spontaneous evaporation of the solvent and by a modified Langmuir-Blodgett deposition. The degree of perfection of the self-assembled arrays was analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Homogeneous close-packed hexagonal ordering of the nanoparticles stretching over large areas was evidenced. These results document the viability of the proposed nanoparticle synthesis for the preparation of high-quality plasmonic templates for thin film solar cells with enhanced power conversion efficiency, surface enhanced Raman scattering, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chitu, L., Siffalovic, P., Majkova, E., Jergel, M., Vegso, K., Luby, S., Capek, I., Satka, A., Perlich, J., Timmann, A., Roth, S. V., Keckes, J., & Maier, G. A. (2010). Modified Langmuir-Blodgett deposition of nanoparticles — measurement of 2D to 3D ordered arrays. Measurement Science Review, 10, 162–154. DOI: 10.2478/v10048-010-0028-0.

    Article  Google Scholar 

  • Esumi, K., Sarashina, S., & Yoshimura, T. (2004). Synthesis of gold nanoparticles from an organometallic compound in supercritical carbon dioxide. Langmuir, 20, 5189–5191. DOI: 10.1021/la049415e.

    Article  CAS  Google Scholar 

  • Feng, X., Ma, H., Huang, S., Pan, W., Zhang, X., Tian, F., Gao, C., Cheng, Y., & Luo, J. (2006). Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. The Journal of Physical Chemistry B, 110, 12311–12317. DOI: 10.1021/jp0609885.

    Article  CAS  Google Scholar 

  • Hussain, I., Graham, S., Wang, Z. X., Tan, B., Sherrington, D. C., Rannard, S. P., Cooper, A. I., & Brust, M. (2005). Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. Journal of the American Chemical Society, 127, 16398–16399. DOI: 10.1021/ja055321v.

    Article  CAS  Google Scholar 

  • Li, X. H., Li, Y. C., Tan, Y. W., Yang, C. H., & Li, Y. F. (2004). Self-Assembly of gold nanoparticles prepared with 3,4-ethylenedioxythiophene as reductant. The Journal of Physical Chemistry B, 108, 5192–5199. DOI: 10.1021/jp0356618.

    Article  CAS  Google Scholar 

  • Ma, L. N., Liu, D. J., & Wang, Z. X. (2010). Synthesis and applications of gold nanoparticle probes. Chinese Journal of Analytical Chemistry, 38, 1–7. DOI: 10.1016/s1872- 2040(09)60013-x.

    Article  CAS  Google Scholar 

  • Liu, Q., Guo, M. L., Nie, Z., Yuan, J. B., Tan, J., & Yao, S. Z. (2008). Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir, 24, 1595–1599. DOI: 10.1021/la702978z.

    Article  CAS  Google Scholar 

  • Liu, Y. J., Hao, Q. Z., Smalley, J. S. T., Liou, J., Khoo, I. C., & Huang, T. J. (2010). A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Applied Physics Letters, 97, 091101. DOI: 10.1063/1.3483156.

    Article  Google Scholar 

  • Mastiholi, B. M., Tangod, V. B., & Raikar, U. S. (2013). Influence of metal nanoparticles on ADS560EI fluorescent laser dye. Optik — International Journal for Light and Electron Optics. 124, 261–264. DOI:10.1016/j.ijleo.2011.11.054.

    Article  CAS  Google Scholar 

  • Moon, S. Y., Sekino, T., Kusunose, T., & Tanaka, S. I. (2009). Simple one-step synthesis of water and organic media soluble gold nanoparticles with various shapes and sizes. Journal of Crystal Growth, 311, 651–656. DOI: 10.1016/j.jcrysgro.2008.09.085.

    Article  CAS  Google Scholar 

  • Nakamoto, M., Kashiwagi, Y., & Yamamoto, M. (2005). Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold(I) thiolate in the absence or presence of amines. Inorganica Chimica Acta, 358, 4229–4236. DOI:10.1016/j.ica.2005.03.037.

    Article  CAS  Google Scholar 

  • Raikar, U. S, Tangod, V. B., Mastiholi, B. M., & Fulari, V. J. (2011). Fluorescence quenching using plasmonic gold nanoparticles. Optics Communications, 284, 4761–4765. DOI:10.1016/j.optcom.2011.05.038.

    Article  CAS  Google Scholar 

  • Selvakannan, P., Mandal, S., Pasricha, R., & Sastry, M. (2004). Hydrophobic, organically dispersible gold nanoparticles of variable shape produced by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules. Journal of Colloid and Interface Science, 279, 124–131. DOI: 10.1016/j.jcis.2004.06.027.

    Article  CAS  Google Scholar 

  • Siffalovic, P., Vegso, K., Jergel, M., Majkova, E., Keckes, J., Maier, G. A., Cornejo, M., Ziberi, B., Frost, F., Hasse, B., & Wiesmann, J. (2010). Measurement of nanopatterned surfaces by real and reciprocal space techniques. Measurement Science Review, 10, 153–156. DOI: 10.2478/v10048-010-0027-1.

    Article  Google Scholar 

  • Wang, L., Wei, G., Guo, C. L., Sun, L. L., Sun, Y. J., Song, Y. G., Yang, T., & Li, Z. (2007). Photochemical synthesis and self-assembly of gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312, 148–153. DOI:10.1016/j.colsurfa.2007.06.043.

    Article  Google Scholar 

  • Wiesmann, J., Graf, J., Hoffmann, C., Hembd, A., Michaelsen, C., Yang, N., Cordes, H., He, B., Preckwinkel, U., & Erlacher, K. (2009). X-ray diffractometry with low power microfocus sources — new possibilities in the lab. Particle & Particle Systems Characterization, 26(3), 112–116. DOI: 10.1002/ppsc.200800052.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Benkovičová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkovičová, M., Végsö, K., Šiffalovič, P. et al. Preparation of sterically stabilized gold nanoparticles for plasmonic applications. Chem. Pap. 67, 1225–1230 (2013). https://doi.org/10.2478/s11696-013-0315-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0315-y

Keywords

Navigation