Skip to main content

Advertisement

Log in

Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

TiO2 film was synthesized by means of the chemical bath deposition (CBD) method from TiCl4 as a precursor and surfactant cetyl trimethyl ammonium bromide (CTAB) as a linking and assembling agent of the titanium hydroxide network on a graphite substrate. Ag and Cu were loaded on the TiO2 film by means of electrodeposition at various applied currents. Photoelectrochemical testing on the composite of Ag-TiO2/G and Cu-TiO2/G was used to define the composite for Escherichia coli-contaminated water disinfection. Disinfection efficiency and the rate of disinfection of E. coli-contaminated water with Ag-TiO2/G as a catalyst was higher than that observed for Cu-TiO2/G in all disinfection methods including photocatalysis (PC), electrocatalysis (EC), and photoelectrocatalysis (PEC). The highest rate constant was achieved by the PEC method using Ag-TiO2/G, k was 6.49 × 10−2 CFU mL−1 min−1. Effective disinfection times of 24 h (EDT24) and 48 h (EDT48) were achieved in all methods except the EC method using Cu-TiO2/G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akurati, K. K., Vital, A., Fortunato, G., Hany, R., Nueesch, F., & Graule, T. (2007). Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Science, 9, 247–257. DOI: 10.1016/j.solidstatesciences.2006.12.004.

    Article  CAS  Google Scholar 

  • Barner, H. D., & Cohen, S. S. (1956). The relation of growth to the lethal damage induced by ultraviolet irradiation in Escherichia coli. Journal of Bacteriology, 71, 149–157.

    CAS  Google Scholar 

  • Blake, D. M., Maness, P.-C., Huang, Z., Wolfrum, E. J., Huang, J., & Jacoby, W. A. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation & Purification Reviews, 28, 1–50. DOI: 10.1080/03602549909351643.

    Article  CAS  Google Scholar 

  • Butterfield, I. M., Christensen, P. A., Curtis, T. P., & Gunlazuardi, J. (1997). Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Research, 31, 675–677. DOI: 10.1016/S0043-1354(96)00391-0.

    Article  CAS  Google Scholar 

  • Cho, M., Lee, Y., Chung, H., & Yoon, J. (2004). Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. Applied and Environmental Microbiology, 70, 1129–1133. DOI: 10.1128/AEM.70.2.1129-1134.

    Article  CAS  Google Scholar 

  • Christensen, P. A., Curtis, T. P., Egerton, T. A., Kosa, S. A. M., & Tinlin, J. R. (2003). Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Applied Catalysis B: Environmental, 41, 371–386. DOI: 10.1016/S0926-3373(02)00172-8.

    Article  CAS  Google Scholar 

  • Chu, D., Yuan, X., Qin, G., Xu, M., Zheng, P., Lu, J., & Zha, L. (2008). Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. Journal of Nanoparticle Research, 10, 357–363. DOI: 10.1007/s11051-007-9241-7.

    Article  CAS  Google Scholar 

  • Doubleday, O. P., Green, M. H. L., & Bridges, B. A. (1977). Spontaneous and ultraviolet-induced mutation in Escherichia coli: Interaction between plasmid and tif-I mutator effects. Journal of General Microbiology, 1977, 163–166.

    Google Scholar 

  • Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 148, 355–363. DOI: 10.1016/S1010-6030(02)00063-1.

    Article  CAS  Google Scholar 

  • Egerton, T. A., Kosa, S. A. M., & Christensen, P. A. (2006). Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Physical Chemistry Chemical Physics, 8, 398–406. DOI. 10.1039/b507516e

    Article  CAS  Google Scholar 

  • Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440. DOI: 10.1038/nature01408.

    Article  Google Scholar 

  • Hammer, N., Kvande, I., Xu, X., Gunnarsson, V., Tøtdal, B., Chen, D., & Rønning, M. (2007). Au-TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catalysis Today, 123, 245–256. DOI: 10.1016/j.cattod.2007.03.001.

    Article  CAS  Google Scholar 

  • Harm, W. (1980). Biological effects of ultraviolet radiation (pp. 31–39). New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Harper, J. C., Christensen, P. A., Egerton, T. A., Curtis, T. P., & Gunlazuardi, J. (2001). Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated with E. coli. Journal of Applied Electrochemistry, 31, 623–628. DOI: 10.1023/A:1017539328022.

    Article  CAS  Google Scholar 

  • He, C., Xiong, Y., Zha, C., Wang, X., & Zhu, X. (2003). Approach to a pulse photoelectrocatalytic process for the degradation of organic pollutants. Journal of Chemical Technology and Biotechnology, 78, 717–723. DOI:10.1002/jctb.851.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental application of semiconductor photocatalysis. Chemical Reviews, 95, 69–96. DOI: 10.1021/cr00033a004.

    Article  CAS  Google Scholar 

  • Kabir, M. F., Haque, F., Vaisman, E., Langford, C. H., & Kantzas, A. (2003). Disinfecting E. coli bacteria in drinking water using a novel fluidized bed reactor. International Journal of Chemical Reactor Engineering, 1, 1–10.

    Article  Google Scholar 

  • Kantor, G. J., & Deering, R. A. (1966). Ultraviolet radiation studies of filamentous Escherichia coli B. Journal of Bacteriology, 92, 1062–1070.

    CAS  Google Scholar 

  • Kappke, J., da Silva, E. R., Schelin, H. R., Paschuk, S. A., Pashchuk, A., de Oliveira, A., Filho, N. C., Szanto, E. M., Takahashi, J., & Calvacante de Souza, J. (2005). Evaluation of Escherichia coli cells damages induced by ultraviolet and proton beam radiation. Brazilian Journal of Physics, 35, 805–807. DOI: 10.1590/S0103-97332005000500022.

    Article  Google Scholar 

  • Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry, 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5.

    Article  CAS  Google Scholar 

  • Körösi, L., Papp, S., Bertóti, I., & Dékány, I. (2007). Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials, 19, 4811–4819. DOI: 10.1021/cm070692r.

    Article  Google Scholar 

  • Kripke, M. L., Cox, P. A., Alas, L. G., & Yarosh, D. B. (1992). Pyrimidine dimmers in DNA initiate systemic suppression in UV-irradiated mice. Proceedings of the National Academy of Sciences of the USA, 89, 7516–7520.

    Article  CAS  Google Scholar 

  • Li, Y., Ma, M., Wang, X., & Wang, X. (2008). Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study. Journal of Environmental Science, 20, 1527–1533. DOI: 10.1016/S1001-0742(08)62561-9.

    Article  CAS  Google Scholar 

  • Maness, P.-C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 65, 4094–4098.

    CAS  Google Scholar 

  • Marugán, J., van Grieken, R., Sordo, C., & Cruz, C. (2008). Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental, 82, 27–36. DOI: 10.1016/j.apcatb.2008.01.002.

    Article  Google Scholar 

  • Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35. DOI: 10.1016/S1010-6030(97)00118-4.

    Article  CAS  Google Scholar 

  • Oguma, K., Katayama, H., & Ohgaki, S. (2002). Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Applied and Environmental Microbiology, 68, 6029–6035. DOI: 10.1128/AEM.68.12.6029-6035.2002.

    Article  CAS  Google Scholar 

  • Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S., & Matsumura, M. (1998). Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using iron(III) ions as electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 118, 41–44. DOI: 10.1016/S1010-6030(98)00374-8.

    Article  CAS  Google Scholar 

  • Peak, M. J., & Peak, J. G. (1982). Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: Action spectrum and properties. Photochemistry and Photobiology, 35, 675–680. DOI: 10.1111/j.1751-1097.1982.tb02628.x.

    Article  CAS  Google Scholar 

  • Peak, M. J., Peak, J. G., Moehring, M. P., & Webs, R. B. (1984). Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region. Photochemistry and Photobiology, 40, 613–620. DOI: 10.1111/j.1751-1097.1984.tb05349.x.

    Article  CAS  Google Scholar 

  • Rahmawati, F., Wahyuningsih, S., & Handayani, N. (2008). Surface modification of semiconductor thin film of TiO2 on graphite substrate by Cu electrodeposition. Indonesian Journal of Chemistry, 8, 331–336.

    Google Scholar 

  • Rahmawati, F., Wahyuningsih, S., & Windu, P. A. (2006). Synthesis of thin film of TiO2 on graphite substrate by chemical bath deposition. Indonesian Journal of Chemistry, 6, 121–126.

    Google Scholar 

  • Rincón, A. G., Pulgarin, C., Adler, N., & Peringer, P. (2001). Interaction between E. coli inactivation and DBP-precursors—dihydroxybenzene isomers—in the photocatalytic process of drinking-water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 139, 233–241. DOI: 10.1016/S1010-6030(01)00374-4.

    Article  Google Scholar 

  • Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1, 225–236. DOI: 10.1039/b201230h.

    Article  CAS  Google Scholar 

  • Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., & Herrlich, P. (1989). UV-induced DNA damage is an intermediate step in a UV-induced expression of human immunodeficiency virus type I, collagenase, c-fos, and metallothionein. Molecular and Cellular Biology, 9, 5169–5181.

    CAS  Google Scholar 

  • Sunada, K., Kikuchi, Y., Hashimoto, K., & Fujishima, A. (1998). Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 32, 726–728. DOI: 10.1021/es970860o.

    Article  CAS  Google Scholar 

  • Wei, C., Lin, W. Y., Zainal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., & Rajeshwar, K. (1994). Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environmental Science & Technology, 28, 934–938. DOI: 10.1021/es00054a027.

    Article  CAS  Google Scholar 

  • Xu, J., Ao, Y., Fu, D., Lin, J., Lin, Y., Shen, X., Yuan, C., & Yin, Z. (2008). Photocatalytic activity on TiO2-coated sideglowing optical fiber reactor under solar light. Journal of Photochemistry and Photobiology A: Chemistry, 199, 165–169. DOI: 10.1016/j.jphotochem.2008.05.019.

    Article  CAS  Google Scholar 

  • Yoon, K.-Y., Byeon, J. H., Park, J.-H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373, 572–575. DOI: 10.1016/j.scitotenv.2006.11.007.

    Article  CAS  Google Scholar 

  • Zelle, M. R., & Hollaender, A. (1954). Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. Journal of Bacteriology, 68, 210–215.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitria Rahmawati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmawati, F., Kusumaningsih, T., Hapsari, A.M. et al. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection. Chem. Pap. 64, 557–565 (2010). https://doi.org/10.2478/s11696-010-0036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0036-4

Keywords

Navigation