Skip to main content
Log in

Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Simple and rapid spectrophotometric methods have been developed for the microdetermination of fluoxetine HCl. The proposed methods are based on the formation of ion-pair complexes between fluoxetine and bromophenol blue (BPB), bromothymol blue (BTB), bromocresol green (BCG), and bromocresol purple (BCP) which can be measured at optimum λmax. Optimization of reaction conditions was investigated. Beerșs law was obeyed in the concentration ranges of 0.5–8.0 μg mL−1, whereas optimum concentration as adopted from the Ringbom plots was 0.7–7.7 μg mL−1. The molar absorptivity, Sandell sensitivity, and detection limit were also calculated. The most optimal and sensitive method was developed using BCG. The correlation coefficient was 0.9988 (n = 6) with a relative standard deviation of 1.25, for six determinations of 4.0 μg mL−1. The proposed methods were successfully applied to the determination of fluoxetine hydrochloride in its dosage forms and in biological fluids (spiked plasma sample) using the standard addition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu Zuhri, A. Z., Shubietah, R. M., & Badah, G. M. (1999). Extractional-spectrophotometric determination of famotidine in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 21, 459–465. DOI: 10.1016/S0731-7085(99)00139-9.

    Article  CAS  Google Scholar 

  • Amin, A. S. (1997). Quantitative determination of some pharmaceutical veterinary formulations using bromocresol purple and bromocresol green. Analytical Letters, 30, 2503–2513. DOI: 10.1080/00032719708001761.

    CAS  Google Scholar 

  • Amin, A. S., & Dessouki, H. A. (2002). Facile colorimetric methods for the quantitative determination of tetramisole hydrochloride. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 2541–2546. DOI: 10.1016/S1386-1425(02)00005-7.

    Article  CAS  Google Scholar 

  • Amin, A. S., El-Sheikh, R., Zahran, F., & Gouda, A. A. (2006). Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 1088–1093. DOI: 10.1016/j.saa.2006.09.027.

    Article  Google Scholar 

  • Amin, A. S., & Issa, Y. M. (2000). Spectrophotometric microdetermination of some pharmaceutically important aminoquinoline antimalarials, as ion-pair complexes. Microchimica Acta, 134, 133–138. DOI: 10.1007/s006040070028.

    Article  CAS  Google Scholar 

  • Amin, A. S., & Issa, Y. M. (1999). Utility of the ion-pair formation for the spectrophotometic determination of terfenadine in pure form and in pharmaceutical formulations. Microchimica Acta, 130, 173–179. DOI: 10.1007/BF01244924.

    Article  CAS  Google Scholar 

  • Amin, A. S., & Issa, Y. M. (1997). Extraction-spectrophotometric method for the determination of betamethasone in pure form and in pharmaceutical formulations. Analytical Letters, 30, 69–78. DOI: 10.1080/00032719708002291.

    CAS  Google Scholar 

  • Amin, A. S., & Issa, Y. M. (1995). Spectrophotometric determination of 6-aminopenicillanic acid using bromophenol blue and bromothymol blue. Microchimica Acta, 117, 187–194. DOI: 10.1007/BF01244889.

    Article  CAS  Google Scholar 

  • Amin, A. S., Moustafa, M. E., & El-Dosoky, R. M. S. (2009). Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation. Journal of the Association of Official Analytical Chemists International, 92, 125–130.

    CAS  Google Scholar 

  • Atmaca, S. (1995). Fluorimetric determination of fluoxetine hydrochloride. Pharmazie, 50, 300–301.

    CAS  Google Scholar 

  • British Pharmacopoeia Commission (2005). British Pharmacopoeia (Vol. II, pp. 2487–2488). London, UK: The Stationery Office.

    Google Scholar 

  • Britton, H. T. S. (1952). Hydrogen ions (4th ed., pp. 1168). London, UK: Chapman and Hall.

    Google Scholar 

  • Cheer, S. M., & Goa, K. L. (2001). Fluoxetine. A review of its therapeutic potential in the treatment of depression associated with physical illness. Drugs, 61, 81–110.

    Article  CAS  Google Scholar 

  • Desiderio, C., Rudaz, S., Raggi, M. A., & Fanali, S. (1999). Enantiomeric separation of fluoxetine and norfluoxetine in plasma and serum samples with high detection sensitivity capillary electrophoresis. Electrophoresis, 20, 3432–3438. DOI: 10.1002/(SICI)1522-2683(19991101)20:17<3432::AIDELPS3432>3.0. CO;2-8.

    Article  CAS  Google Scholar 

  • Eap, C. B., & Baumann, P. (1996). Analytical methods for the quantitative determination of selective serotonin reuptake inhibitors for therapeutic drug monitoring purposes in patients. Journal of Chromatography B, 686, 51–63. DOI: 10.1016/S0378-4347(96)00338-6.

    Article  CAS  Google Scholar 

  • El-dawy, M. A., Mabrouk, M. M., & El-Barbary, F. A. (2002). Liquid chromatographic determination of fluoxetine. Journal of Pharmaceutical and Biomedical Analysis, 30, 561–571. DOI: 10.1016/S0731-7085(02)00312-6.

    Article  CAS  Google Scholar 

  • Flores, J. R., Nevado, J. J. B., Salcedo, A. M. C., & Díaz, M. P. C. (2004). Development of a capillary zone electrophoretic method to determine six antidepressants in their pharmaceutical preparations. Experimental design for evaluating the ruggedness of method. Journal of Separation Science, 27, 33–40. DOI: 10.1002/jssc.200301646.

    Article  CAS  Google Scholar 

  • Irving, H. M. N. H., Freiser, H., & West, T. S. (1981). IUPAC compendium of analytical nomenclature: Definitive rules. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Khan, I. U., Aman, T., Iqbal, M. A., & Kazi, A. A. (2000). Spectrophotometric quantitation of fluoxetine hydrochloride using benzoyl peroxide and potassium iodide. Microchimica Acta, 134, 27–31. DOI: 10.1007/s006040070049.

    Article  CAS  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Harlow, UK: Pearson, Prentice Hall.

    Google Scholar 

  • Nevado, J. J. B., Llerena, M. J. V., Salcedo, A. M. C., & Nuevo, E. A. (2000). Determination of fluoxetine, fluvoxamine and clomipramine in pharmaceutical formulations by capillary gas chromatography. Journal of Chromatographic Science, 38, 200–206.

    CAS  Google Scholar 

  • Panzarino, P. J., & Nash, D. B. (2001). Cost effective treatment of depression with selective serotonin reuptake inhibitors. American Journal of Management Care, 7, 173–184.

    Google Scholar 

  • Piperaki, S., & Parissi-Poulou, M. (1996). Evaluation of the chromatographic behaviour of fluoxetine and norfluoxetine using different cyclodextrins as mobile phase additives and fluorimetric detection. Journal of Liquid Chromatography & Related Technologies, 19, 1405–1421. DOI: 10.1080/10826079608007191.

    Article  CAS  Google Scholar 

  • Prabhakar, A. H., Patel, V. B., & Giridhar, R. (1999). Spectrophotometric determination of fluoxetine hydrochloride in bulk and in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 20, 427–432. DOI: 10.1016/S0731-7085(98) 00255-6.

    Article  CAS  Google Scholar 

  • Rahman, N., & Hejaz-Azmi, S. N. (2000). Extractive spectrophotometric methods for determination of diltiazem HCl in pharmaceutical formulations using bromothymol blue, bromophenol blue and bromocresol green. Journal of Pharmaceutical and Biomedical Analysis, 24, 33–41. DOI: 10.1016/S0731-7085(00)00409-X.

    Article  CAS  Google Scholar 

  • Saber, A. L. (2009). On-line solid phase extraction coupled to capillary LC-ESI-MS for determination of fluoxetine in human blood plasma, Talanta, 78, 295–299. DOI: 10.1016/j.talanta.2008.11.016.

    Article  CAS  Google Scholar 

  • Spinks, D., & Spinks, G. (2002). Serotonin reuptake inhibition: an update on current research strategies. Current Medicinal Chemistry, 9, 799–810.

    Article  CAS  Google Scholar 

  • The United States Pharmacopeia (2005). The United States Pharmacopeia, USP 28, The National Formulary (pp. 853–856). Rockville, MD, USA: U.S. Pharmacopeial Convention, Inc.

    Google Scholar 

  • Zamora, L. L., & Calatayud, J. M. (1996). Extractive spectrophotometric determination of ondansetron by ion-pair formation with bromocresol green. Analytical Letters, 29, 785–792. DOI: 10.1080/00032719608001784.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa S. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, A.S., Ahmed, I.S., Dessouki, H.A. et al. Spectrophotometric quantification of fluoxetine hydrochloride: Application to quality control and quality assurance processes. Chem. Pap. 64, 278–284 (2010). https://doi.org/10.2478/s11696-010-0010-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-010-0010-1

Keywords

Navigation