Skip to main content
Log in

Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A simple, selective, highly sensitive and accurate procedure for the determination of trace amounts of copper has been developed based on solid-phase spectrophotometry. Copper reacts with 5-(2-benzothiazolylazo)-8-hydroxyquinoline (BTAHQ) to give a complex with high molar absorptivity (3.17 × 107 L mol−1 cm−1, 3.07 × 108 L mol−1 cm−1, 1.22 × 109 L mol−1 cm−1, and 1.80 × 109 L mol−1 cm−1), fixed on a Dowex 1-X8 type anion-exchange resin for 10 mL, 100 mL, 500 mL, and 1000 mL, respectively. The absorbance at 667 nm and 800 nm packed in a 1.0 mm cell was measured directly. Calibration is linear over the range 0.2–3.7 µg L−1 with RSD of < 1.28 % (n = 10). The detection and quantification limits of the 500 mL sample method are 79 ng L−1 and 260 ng L−1 when using 60 mg of Dowex 1-X8. For a 1000 mL sample, the detection and quantification limits are 67 ng L−1 and 220 ng L−1 using 60 mg of the exchanger. Increasing the sample volume can enhance the sensitivity. The proposed method was applied to the determination of copper in different environmental water samples (tap, pit, spring, and river), food products (rice, corn flour, and tea), and mushrooms, using the standard addition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alieva, R. A., Gadzhieva, S. R., Guseiinli, A. G., & Alieva, T. I. (2008). Tetrahydroxyazon SCl as a new analytical reagent for determining copper(II). Journal of Analytical Chemistry, 63, 21–25. DOI: 10.1007/s10809-008-1004-9.

    Article  CAS  Google Scholar 

  • American Public Health Association (1981). Standard methods for the examination of water and wastewater (15th Ed.). Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Amin, A. S. (2000). The surfactant-sensitized analytical reaction of niobium with some thiazolylazo compounds. Microchemical Journal, 65, 261–267. DOI: 10.1016/S0026-265X(00)00119-3.

    Article  CAS  Google Scholar 

  • Andres, M. P. S., Marina, M. L., & Vera, S. (1995). Spectrophotometric determination of copper(II), nickel(II), and cobalt(II) as complexes with sodium diethyldithiocarbamate in the anionic micellar media of dodecylsulfate salts. Analyst, 120, 255–259. DOI: 10.1039/AN9952000255.

    Article  Google Scholar 

  • Andres, M. P. S., Marina, M. L., & Vera, S. (1994). Spectrophotometric determination of copper(II), nickel(II) and cobalt(II) as complexes with sodium diethyldithiocarbamate in cationic micellar medium of hexadecyltrimethylammonium salts. Talanta, 41, 179–185. DOI: 10.1016/0039-9140(94)80105-3.

    Article  Google Scholar 

  • Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K., & Matis, K. A. (2003). Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37, 4018–4026. DOI: 10.1016/S0043-1354(03)00314-2.

    Article  Google Scholar 

  • Balogh, I. S., Ruschak, M., Andruch, V., & Bazeĺ, Y. (2008). An investigation of the reaction of copper ions with dimethylindodicarbocyanine dye: An application for the determination of Cu(I), Cu(II) and Cu(III). Talanta, 76, 111–115. DOI: 10.1016/j.talanta.2008.02.011.

    Article  CAS  Google Scholar 

  • Britton, H. T. S. (1952). Hydrogen ions (4th Ed., pp. 1168). London: Chapman and Hall.

    Google Scholar 

  • Chaisuksant, R., Palkawong-na-ayuthaya, W., & Grudpan, K. (2000). Spectrophotometric determination of copper in alloys using naphthazarin. Talanta, 53, 579–585. DOI: 10.1016/S0039-9140(00)00534-8.

    Article  CAS  Google Scholar 

  • Chen, J.-G., Chen, H.-W., Chen, S.-H., Lin, L., & Zhong, Y.-Y. (2007). Determination of ultratrace amounts of copper(II) in water samples by electrothermal atomic absorption spectrometry after cloud point extraction. Chemical Research in Chinese Universities, 23, 143–147. DOI: 10.1016/S1005-9040(07)60030-0.

    Article  Google Scholar 

  • Chimpalee, N., Chimpalee, D., Lohwithee, S., Nakwatchara, L., & Burns, D. T. (1996). Spectrophotometric determination of copper after extraction of its chelate with bis(acetylacetone)ethylenediimine. Analytica Chimica Acta, 329, 315–318. DOI: 10.1016/0003-2670(96)00141-9.

    Article  CAS  Google Scholar 

  • Cluley, H. J. (1954). The absorptiometric determination of minor amounts of copper in metals. Analyst, 79, 561–567. DOI: 10.1039/AN9547900561.

    Article  CAS  Google Scholar 

  • Dalman, O., Tüfekçi, M., Nohut, S., Güner, S., & Karaböcek, S. (2002). Spectrophotometric determination of copper in pharmaceutical and biological samples with 3-{2-[2-(2-hydroxyimino-1-methyl-propylideneamino)-(ethylamino]-ethyl-imino}-butan-2-one oxime). Journal of Pharmaceutical and Biomedical Analysis, 27, 183–189. DOI: 10.1016/S0731-7085(01)00519-2.

    Article  CAS  Google Scholar 

  • Dragomirecky, A., Mayer, V., Michal, J., & Rericha, K. (1968). Photometrische Analyse anorganischer Roh- und Werk-stoffe. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie.

    Google Scholar 

  • Ferreira, S. L. C., Ferreira, J. R., Dantas, A. F., Lemos, V. A., Araújo, N. M. L., & Costa, A. C. S. (2000). Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite. Talanta, 50, 1253–1259. DOI: 10.1016/S0039-9140(99)00230-1.

    Article  CAS  Google Scholar 

  • Fernandez-de Cordova, M. L., Molina-Diaz, A., Pascual-Reguera, M. I., & Capitan-Vallvey, L. F. (1992). Determination of trace amounts of cobalt at sub-µg 1−1 level by solid phase spectrophotometry. Analytical Letters, 25, 1961–1980. DOI: 10.1080/00032719208018265.

    CAS  Google Scholar 

  • Fernández-de Córdova, M. L., Molina-Díaz, A., Pascual-Reguera, M. I., & Capitán-Vallvey, L. F. (1994). Determination of trace amounts of copper with 4-(2-pyridylazo)resorcinol by solid phase spectrophotometry. Fresenius’ Journal of Analytical Chemistry, 349, 722–727. DOI: 10.1007/BF00325646.

    Article  Google Scholar 

  • Fotiev, A. A. (1972). Analiticheskaya khimiya neorganicheskikh soedinenii (pp. 27). Sverdlovsk, Akademia Nauk SSSR.

    Google Scholar 

  • Freemantle, M. H. (1989). Chemistry in action. London: Macmillan Education Ltd.

    Google Scholar 

  • Fu, D., & Yuan, D. (2007). Spectrophotometric determination of trace copper in water samples with thiomichlersketone. Spectrochimica Acta Part A, 66, 434–437. DOI: 10.1016/j.saa.2006.03.018.

    Article  Google Scholar 

  • Geering, H. R., & Hodgson, J. F. (1966). Extraction and stability constants of copper complexes of 1,5-diphenylcarbazone. Analytica Chimica Acta, 36, 537–540. DOI: 10.1016/0003-2670(66)80092-2.

    Article  CAS  Google Scholar 

  • Geiger, R. W., & Sandell, E. B. (1953). Copper(II)-dithizone equilibria in water-carbon tetrachloride. Analytica Chimica Acta, 8, 197–208. DOI: 10.1016/S0003-2670(00)87633-3.

    Article  CAS  Google Scholar 

  • Ghazy, S. E., Samra, S. E., & El-Morsy, S. M. (2001). Removal of copper(II) from aqueous solutions by flotation using limestone fines as the sorbent and oleic acid as the surfactant. Adsorption Science & Technology, 19, 175–185.

    Article  CAS  Google Scholar 

  • Gillain, G., Duyckaerts, G., & Disteche, A. (1979). Direct and simultaneous determinations of Zn, Cd, Pb, Cu, Sb and Bi dissolved in sea water by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode. Analytica Chimica Acta, 106, 23–37. DOI: 10.1016/S0003-2670(01)83701-6.

    Article  CAS  Google Scholar 

  • Göksungur, Y., Üren, S., & Güvenç, U. (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 96, 103–109. DOI: 10.1016/j.biortech.2003.04.002.

    Article  Google Scholar 

  • Hunt, D. T. E., & Wilson, A. L. (1986). The chemical analysis of water (pp. 398). Oxford: The Royal Society of Chemistry.

    Google Scholar 

  • Jadid, A. P., & Eskandari, H. (2008). Preconcentration of copper with solid phase extraction and its determination by flame atomic absorption spectrometry. E-Journal of Chemistry, 5, 878–883.

    CAS  Google Scholar 

  • Kamiura, T., Funasaka, K., Tajima, Y., Kawaraya, T., & Kuroda, K. (1996). Pretreatment by yeast for determination of nickel and vanadium in bitumen-in-water emulsion by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 327, 61–64. DOI: 10.1016/0003-2670(96)00060-8.

    Article  CAS  Google Scholar 

  • Karaböcek, S., Nohut, S., Dalman, Ö., & Güner, S. (2000). A new spectrophotometric reagent for copper: 3,3′-(1,3-propanediyldiimine)bis-[3-methyl-2-butanone]dioxime. Analytica Chimica Acta, 408, 163–168. DOI: 10.1016/S0003-2670(99)00825-9.

    Article  Google Scholar 

  • Khalifa, M. E., Akl, M. A., & Ghazy, S. E. (2001). Selective flotation-spectrophotometric determination of trace copper(II) in natural waters, human blood and drug samples using phenanthraquinone monophenylthiosemicarbazone. Chemical Pharmaceutical Bulletin, 49, 664–668. DOI: 10.1248/cpb.49.664.

    Article  CAS  Google Scholar 

  • Kim, J.-S., Akeprathumchai, S., & Wickramasinghe, S. R. (2001). Flocculation to enhance microfiltration. Journal of Membrane Science, 182, 161–172. DOI: 10.1016/S0376-7388(00)00564-0.

    Article  CAS  Google Scholar 

  • Li, S., Li, S., & Chen, A. (1993). Spectrophotometric determination of trace copper with a Cu-diethyldithiocarbamate-β-cyclodextrin colour system. Talanta, 40, 1085–1090. DOI: 10.1016/0039-9140(93)80170-V.

    Article  CAS  Google Scholar 

  • Ma, H.-M., Huang, Y.-X., & Liang, S.-C. (1996). A new polymeric chromogenic reagent for the determination of copper(II). Analytica Chimica Acta, 334, 213–219. DOI: 10.1016/S0003-2670(96)00262-0.

    Article  CAS  Google Scholar 

  • Melo, M. H. A., Costa, A. C. S., Nóbrega, J. A., & Ferreira, S. L. C. (2005). The use of water soluble tertiary amine reagent for solubilization and metal determination in fish muscle tissue. Journal of the Brazilian Chemical Society, 16, 69–73. DOI: 10.1590/S0103-50532005000100011.

    Article  CAS  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th Ed.). Harlow: Pearson/Prentice Hall.

    Google Scholar 

  • Molina-Diaz, A., Vida-Sagrista, J. J., Pascual-Reguera, M. I., & Capitan-Vallvey, L. F. (1991). Solid phase spectrophotometric microdetermination of manganese. International Journal of Environmental Analysis, 45, 219–228. DOI: 10.1080/03067319108027387.

    Article  CAS  Google Scholar 

  • Moore, G. L. (1989). Introduction to inductively coupled plasma atomic emission spectrometry, Analytical spectroscopy library (Vol. 3). Amsterdam, New York: Elsevier.

    Google Scholar 

  • Mori, I., Fujimoto, T., Fujita, Y., & Matsuo, T. (1995). Selective and sensitive spectrophotometric determination of copper(II) and benzoylperoxide with N-ethyl-2-naphthylamine. Talanta, 42, 77–81. DOI: 10.1016/0039-9140(94)00219-I.

    Article  CAS  Google Scholar 

  • Murthy, N. K., & Murthy, B. S. (1995). Detection and spectrophotometric determination of copper(III) with p-anisidine. Talanta, 42, 101–103. DOI: 10.1016/0039-9140(94)00223-F.

    Article  CAS  Google Scholar 

  • Nohut, S., Karaböcek, S., Güner, S., & Gök, Y. (1999). Extraction and spectrophotometric determination of copper(II) with S, S′-bis(2-aminophenyl) oxalate. Journal of Pharmaceutical and Biomedical Analysis, 20, 309–314. DOI: 10.1016/S0731-7085(99)00045-X.

    Article  CAS  Google Scholar 

  • Norton, R. L., & Orpwood, J. R. (1980). Multi-element analysis using an inductively-coupled plasma spectrometer, Part. 1, Commissioning and preliminary evaluation of performance, Technical Report TR 141. Medmenham, Bucks, England: Water Research Centre.

    Google Scholar 

  • Ojeda, C. B., de Torres, A. G., Rojas, F. S., & Pavón, J. M. C. (1987). Determination of copper with 1,5-bis(di-2-pyridylmethylene) thiocarbonohydrazide: Determination of copper in alloys. Microchemical Journal, 35, 164–167. DOI: 10.1016/0026-265X(87)90070-1.

    Article  Google Scholar 

  • Parsons, M. L., Major, S., & Forster, A. R. (1983). Trace element determination by atomic spectroscopic methods—State of the art. Applied Spectroscopy, 37, 411–479.

    Article  CAS  Google Scholar 

  • Pascual-Reguera, M. I., Molina-Diaz, A., Ramos-Martos, N., & Capitan-Vallvey, L. F. (1991). Determination of traces of vanadium with 5-bomosalicylhydroxamic acid by solid-phase spectrophotometry. Analytical Letters, 24, 2245–2261. DOI: 10.1080/00032719108053049.

    CAS  Google Scholar 

  • Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanoneoxalyldihydrazone. Analytical Chemistry, 27, 1195–1199. DOI: 10.1021/ac60103a054.

    Article  CAS  Google Scholar 

  • Pinta, M. (1973). Méthodes de référence pour la détermination des éléments minéraux dans les végétaux. Détermination des éléments Ca, Mg, Fe, Mn, Zn et Cu par absorption atomique. Oléagineux, 28, 87–92.

    CAS  Google Scholar 

  • Pinto, J. J., Moreno, C., & García-Vargas, M. (2002). A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and Bioanalytical Chemistry, 373, 844–848. DOI: 10.1007/s00216-002-1403-y.

    Article  CAS  Google Scholar 

  • Reddy, K. H., Prasad, N. B. L., & Reddy, T. S. (2003). Analytical properties of 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper(II) and nickel(II) in edible oils and seeds. Talanta, 59, 425–433. DOI: 10.1016/S0039-9140(02)00543-X.

    Article  CAS  Google Scholar 

  • Reddy, S. A., Reddy, K. J., Narayana, S. L., & Reddy, A. V. (2008). Analytical applications of 2,6-diacetylpyridine bis-4-phenyl-3-thiosemicarbazone and determination of Cu(II) in food samples. Food Chemistry, 109, 654–659. DOI: 10.1016/j.foodchem.2007.12.073.

    Article  CAS  Google Scholar 

  • Ringbom, A. (1938). Über die Genauigkeit der colorimetrischen Analysenmethoden I. Fresenius’ Journal of Analytical Chemistry, 115, 332–343. DOI: 10.1007/BF01753937.

    Article  Google Scholar 

  • Saito, T. (1994). Sensing of trace copper ion by a solid phase extraction-spectrophotometry using a poly(vinyl chloride) membrane containing bathocuproine. Talanta, 41, 811–815. DOI: 10.1016/0039-9140(94)80054-5.

    Article  CAS  Google Scholar 

  • Shamsipur, M., & Alizadeh, N. (1992). Spectrophotometric study of cobalt, nickel, copper, zinc, cadmium and lead complexes with murexide in dimethylsulphoxide solution. Talanta, 39, 1209–1212. DOI: 10.1016/0039-9140(92)80222-Y.

    Article  CAS  Google Scholar 

  • Sorensen, E. M. B. (1991). Metal poisoning in fish. Boston, MA, USA: CRC Press.

    Google Scholar 

  • Tang, Y. B., Chen, F. Y., & Zhang, H. L. (1998). Adsorption of Pb2+, Cu2+ and Zn2+ ions on to waste fluidized catalytic cracking (FCC) catalyst. Adsorption Science & Technology, 16, 595–601.

    CAS  Google Scholar 

  • Thakur, M., & Deb, M. K. (1999). The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N, N′-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta, 49, 561–569. DOI: 10.1016/S0039-9140(99)00054-5.

    Article  CAS  Google Scholar 

  • Tölg, G., & Klockenkämper, R. (1993). The role of total-reflection X-ray fluorescence in atomic spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 48, 111–127. DOI: 10.1016/0584-8547(93)80015-M.

    Article  Google Scholar 

  • Turkoglu, O., & Soylak, M., (2005). Spectrophotometric determination of copper in natural waters and pharmaceutical samples with chloro(phenyl) glyoxime. Journal of the Chinese Chemical Society, 52, 575–579.

    CAS  Google Scholar 

  • Vogel, A. I. (1961). A text-book of quantitative inorganic analysis (3rd Ed., pp. 441). London: Longmans.

    Google Scholar 

  • Walas, S., Tobiasz, A., Gawin, M., Trzewik, B., Strojny, M., & Mrowiec, H. (2008). Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta, 76, 96–101. DOI: 10.1016/j.talanta.2008.02.008.

    Article  CAS  Google Scholar 

  • Welz, B. (1985). Atomic absorption spectroscopy. Amsterdam: VCH.

    Google Scholar 

  • Wilson, A. L. (1962). A solvent-extraction absorptiometric method for determining copper in boiler feed-water. Analyst, 87, 884–894. DOI: 10.1039/AN9628700884.

    Article  CAS  Google Scholar 

  • Winge, R. K., Fassel, V. A., Kniseley, R. N., DeKalb, E., & Raas, W. J., Jr. (1977). Determination of trace elements in soft, hard, and saline waters by the inductively coupled plasma, multi-element atomic emission spectroscopic (ICP-MAES) technique. Spectrochimica Acta Part B: Atomic Spectroscopy, 32, 327–345. DOI: 10.1016/0584-8547(77)80021-9.

    Article  Google Scholar 

  • Yamini, Y., & Tamaddon, A. (1999). Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples. Talanta, 49, 119–124. DOI: 10.1016/S0039-9140(98)00351-8.

    Article  CAS  Google Scholar 

  • Yi, S. (1987). A study of the spectrophotometric determination of traces of cadmium(II) and copper(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in the presence of polyglycol octylphenyl ether. Microchemical Journal, 36, 386–390. DOI: 10.1016/0026-265X(87)90182-2.

    Article  CAS  Google Scholar 

  • Yoshimura, K., & Ohashi, S. (1978). Ion-exchanger colorimetry—II microdetermination of chromium in natural waters. Talanta, 25, 103–107. DOI: 10.1016/0039-9140(78)80041-1.

    Article  CAS  Google Scholar 

  • Yoshimura, K., & Waki, H. (1985). Ion-exchanger phase absorptiometry for trace analysis. Talanta, 32, 345–352. DOI: 10.1016/0039-9140(85)80097-7.

    Article  CAS  Google Scholar 

  • Yuan, L., Huo, S. H., Ren, X. N., & Chen, H. (2008). A novel spectrophotometric determination of copper(II) with bromosulphonazo III. Chinese Chemical Letters, 19, 92–94. DOI: 10.1016/j.cclet.2007.10.038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa S. Amin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, A.S. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline. Chem. Pap. 63, 625–634 (2009). https://doi.org/10.2478/s11696-009-0067-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-009-0067-x

Keywords

Navigation