Skip to main content
Log in

In vitro investigations on the biological control of Xiphinema index with Trichoderma species

  • Scientific Article
  • Published:
Helminthologia

Summary

The application of Trichoderma spp. for the suppression of plant-parasitic nematode populations is a promising tool in biological control. Sixteen strains of six Trichoderma species (T. atroviride, T. harzianum, T. rossicum, T. tomentosum, T. virens and T. asperellum) were tested in vitro in order to identify the most appropriate strains to control the dagger nematode Xiphinema index. Mortality assays revealed that the strains of the widely investigated T. harzianum species have caused significant reduction of X. index populations, although T. harzianum strains were not the most efficient among all the tested fungi. Certain T. virens and T. atroviride strains and T. rossicum have triggered faster and higher mortality. Generally, our data indicate that Trichoderma species have innate ability to decrease X. index population. Furthermore, as we had difficulties with maintaining X. index in vitro, we successfully used a newly developed method to keep X. index specimens viable during the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affokpon, A., Coyne, D. L., Htay, C. C., Agbédé, R. D., Lawouin, L., Coosemans, J. (2011): Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem., 43: 600–608. DOI: 10.1016/j.soilbio.2010.11.029

    Article  CAS  Google Scholar 

  • Atreya, K. (2008): Health costs from short-term exposure to pesticides in Nepal. Soc. Sci. Med., 67: 511–519. DOI: 10.1016/j.socscimed.2008.04.005.

    Article  PubMed  Google Scholar 

  • Bell, D. K., Wells, H. D., Markham, C. R. (1982): In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72: 379–382

    Article  Google Scholar 

  • Brown, D. J. F., Boag, B. (1988): An examination of methods used to extract virus-vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematol. Mediterr., 16: 93–99

    Google Scholar 

  • Brun, G. L., Macdonald, R. M, Verge, J., Aubé, J. (2008): Long-term atmospheric deposition of current-use and banned pesticides in Atlantic Canada; 1980–2000. Chemosphere, 71: 314–327. DOI: 10.1016/j.chemosphere.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  • Copping, L. G., Menn, J. J. (2000): Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci., 56: 651–676. DOI: 10.1002/1526-4998(200008)56:8〈651::AID-PS201〉3.0.CO;2-U

    Article  CAS  Google Scholar 

  • Dodd, S. L., Lieckfeldt, E., Samuels, G. J. (2003): Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95: 27–40

    Article  PubMed  Google Scholar 

  • Dong, L. Q., Zhang, K. Q. (2006): Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil, 288: 31–45. DOI: 10.1007/s11104-006-9009-3

    Article  CAS  Google Scholar 

  • Flegg, J. J. M. (1967): Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb’s decanting and sieving technique. Ann. Appl. Biol., 60: 429–437

    Article  Google Scholar 

  • Howell, C. R. (2003): Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis., 87: 4–10

    Article  Google Scholar 

  • Kredics, L., Láday, M., Körmöczi, P., Manczinger, L., Rákhely, G., Vágvölgyi, C., Szekeres, A. (2011): Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Pannonian Plain. Acta Biol. Szeged. (in press)

    Google Scholar 

  • Khan, M. R., Hague, Z. (2011): Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyine incognita, on tobacco. Phytopathol. Mediterr., 50: 257–266

    CAS  Google Scholar 

  • Kullnig, C. M., Szakacs, G., Kubicek, C. P. (2000): Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol. Res., 104: 1117–1125. DOI: 10.1017/S0953756200002604

    Article  CAS  Google Scholar 

  • Kullnig, C. M., Krupica, T., Woo, S. L., Mach, R. L., Rey, M., Benítez, T., Lorito, M., Kubicek, C. P. (2001): Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol. Res., 105: 770–772. DOI: 10.1017/S0953756201229967.

    Article  Google Scholar 

  • Parvatha, R. P., Rao, M. S., Nagesh, M. (1996): Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematologia Mediterrannea, 24: 265–267

    Google Scholar 

  • Perry, R. N., Moens, M. (2006): Plant Nematology. Wallingford, UK, CABI Publishing, pp. 4–166

    Book  Google Scholar 

  • R DEVELOPMENT CORE TEAM (2011): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.

    Google Scholar 

  • Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M. (2012): Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl. Soil Ecol., 56: 58–62. DOI: 10.1016/j.apsoil.2012.02.008

    Article  Google Scholar 

  • Rao, M. S., Reddy, P. P., Nagesh, M. (1997): Management of root-knot nematode, Meloidogyne incognita on tomato by integration of Trichoderma harzianum with neem cake. Z. Pflanzenkr. Pflanzenschutz, 104: 423–425

    Google Scholar 

  • Rao, M. S., Reddy, P. P., Nagesh, M. (1998): Evaluation of plant based formulations of Trichoderma harzianum for management of Meloidogyne incognita on egg plant. Nematol. Mediterr., 26: 59–62

    Google Scholar 

  • Sahebani, N., Hadavi, N. (2008): Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem., 40: 2016–2020. DOI: 10.1016/j.soilbio.2008.03.011

    Article  CAS  Google Scholar 

  • Sasser, J. N., Freckman, D. W. (1987): A world perspective on nematology: the role of the society. In: Veech, J. A., Dickson, D. W. (Eds) Vistas on Nematology: Society of Nematologists, Inc. Hyattsville, Maryland., USA, pp. 7–14

    Google Scholar 

  • Schubert, M., Fink, S., Schwarze, F. W. M. R. (2008): In vitro screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. Journal, 31: 227–248. DOI: 10.1080/03071375.2008.9747541

    Article  Google Scholar 

  • Seifullah, P., Thomas, B. J. (1996): Studies on the parasitism of Globodera rostochiensis by Trichoderma harzianum using low temperature scanning electron microscopy. Afro-Asian J. Nematol., 6: 117–122

    Google Scholar 

  • Sharma, P., Pandey, R. (2009): Biological control of root-knot nematode; Meloidogyne incognita in the medicinal plant; Withania somnifera and the effect of biocontrol agents on plant growth. Afr. J. Agric. Res., 4: 564–567

    Google Scholar 

  • Sharon, E., Bar Eyal, M., Chet, I., Herrera Estrella, A., Kleifeld, O., Spiegel, Y. (2001): Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91: 687–693. DOI: 10.1094/PHYTO.2001.91.7.687

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, Y., Sharon, E., Bar-Eyal, M., Van Assche, A., Van Kerckhove, S., Vanachter, A., Viterbo, A., Chet, I. (2007): Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. In Proceedings of IOBC/WPRS Meeting, Spa, Belgium, IOBC/WPRS Bulletin, 30: 129–133

    Google Scholar 

  • Szabó, M., Csepregi, K., Gálber, M., Virányi, F., Fekete, Cs. (2012): Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode eggparasitism. Biol. Control, 63: 121–128. DOI: 10.1016/j.biocontrol.2012.06.013

    Article  Google Scholar 

  • Webster, M. J. (1972): Economic Nematology. London, UK, Academic Press, pp. 339–376

    Google Scholar 

  • Windham, G. L., Windham, M. T., Williams, W. P. (1986): Effect of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis. Report., 73: 493–494

    Article  Google Scholar 

  • Wuczkowski, M., Druzhinina, I., Gherbawy, Y., Klug, B., Prillinger, H., Kubicek, C. P. (2003): Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol. Res., 158: 125–133. DOI: 10.1078/0944-5013-00193

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. S., Li, G. H., Zhao, P. J., Zheng, X., Luo, S. L., Li, L., Niu, X. M., Zhang, K. Q. (2010): Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol., 26: 2297–2302. DOI: 10.1007/s11274-010-0410-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Daragó.

About this article

Cite this article

Daragó, Á., Szabó, M., Hrács, K. et al. In vitro investigations on the biological control of Xiphinema index with Trichoderma species. Helminthologia 50, 132–137 (2013). https://doi.org/10.2478/s11687-013-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11687-013-0121-7

Keywords

Navigation