Skip to main content
Log in

Effect of altered snow conditions on decomposition in three subalpine plant communities

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Snow cover and its spatio-temporal changes play a crucial role in the ecological functioning of mountains. Some human activities affecting snow properties may cause shifts in the biotic components of ecosystems, including decomposition. However, these activities remain poorly understood in subalpine environments. We explored the effect of human-modified snow conditions on cellulose decomposition in three vegetation types. Snow density, soil temperature, and the decomposition of cellulose were studied in Athyrium, Calamagrostis, and Vaccinium vegetation types, comparing stands intersected by groomed ski slope and natural (outside the ski slope) stands. Increased snow density caused the deterioration of snow insulation and decreased the soil temperature inside the ski slope only slightly in comparison with that outside the ski slope in all vegetation types studied. The decomposition was apparently lower in Athyrium vegetation relative to the other vegetation types and strongly (Athyrium vegetation) to weakly lower (other vegetation types) in groomed than in ungroomed stands. Wintertime, including the melting period, was decisive for overall decomposition. Our results suggest that differences in decomposition are influenced by ski slope operations and vegetation type. Alterations in snow conditions appeared to be subtle and long-term but with important consequences for conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavazov K.S., Dynamics of alpine plant litter decomposition in a changing climate, Plant Soil, 2010, 337, 19–32

    Article  CAS  Google Scholar 

  2. Jones H.G., Pomeroy J.W., Walker D.A., Hoham R.W., Snow ecology, Cambridge University Press, Cambridge, UK, 2001

    Google Scholar 

  3. Körner C., Alpine plant life, 2nd ed., Springer-Verlag, Berlin, 2003

    Book  Google Scholar 

  4. Walker M.D., Walker D.A., Welker J.M., Arft A.M., Bardsley T., Brooks P.D., et al., Longterm experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra, Hydrol. Process., 1999, 13, 2315–2330

    Article  Google Scholar 

  5. Baiderin V.V., Winter recreation and subnival plant development, Sov. J. Ecol., 1982, 13, 287–291

    Google Scholar 

  6. Rixen C., Stoeckli V., Huovinen C., Huovinen K., The phenology of four subalpine herbs in relation to snow cover characteristics, In: Dolman A.J., Hall A.J., Kavvas M.L., Oki T., Pomeroy J.W. (Eds.), Soil-vegetation-atmosphere transfer schemes and large-scale hydrological models, (18–27 July 2001, Maastricht, the Netherlands) International Association of Hydrological Sciences, Wallingford, UK, 2001, 359–362

    Google Scholar 

  7. Heegaard E., A model of alpine species distribution in relation to snowmelt time and altitude, J. Veg. Sci., 2002, 13, 493–504

    Article  Google Scholar 

  8. Huelber K., Gottfried M., Pauli H., Reiter K., Winkler M., Grabherr G., Phenological responses of snowbed species to snow removal dates in the Central Alps: Implications for climate warming, Arct. Antarct. Alp. Res., 2006, 38, 99–103

    Article  Google Scholar 

  9. Kudo G., Hirao A. S., Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for globalchange impacts, Popul. Ecol., 2006, 48, 49–58

    Article  Google Scholar 

  10. Zeidler M., Banaš M., Duchoslav M., Carbohydrate reserve changes in below-ground biomass of subalpine grasslands as a result of different snow conditions (the Hrubý Jeseník Mts., Czech Republic), Pol. J. Ecol., 2008, 56, 75–83

    Google Scholar 

  11. Baptist F., Yoccoz N.G., Choler P., Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 2010, 328, 397–410

    Article  CAS  Google Scholar 

  12. Hejcman M., Dvořák I.J., Kociánová M., Pavlů V., Nežerková P., Vítek O., et al., Snow depth and vegetation pattern in a late-melting snowbed analyzed by GPS and GIS in the Giant Mountains, Czech Republic, Arct. Antarct. Alp. Res., 2006, 38, 90–98

    Article  Google Scholar 

  13. Walker D.A., Halfpenny J.C., Walker M.D., Carol A., Long-term studies of snow-vegetation interactions, Bioscience, 1993, 43, 287–301

    Article  Google Scholar 

  14. Aerts R., The freezer defrosting: global warming and litter decomposition rates in cold biomes, J. Ecol., 2006, 94, 713–724

    Article  Google Scholar 

  15. Edwars A.C., Scalenghe R., Freppaz M., Changes in the seasonal snow cover of alpine regions and its effects on soil processes: a review, Quatern. Int., 2007, 162–163, 172–181

    Article  Google Scholar 

  16. Clement J.C., Robson T.M., Guillemin R., Saccone P., Lochet J., Aubert S., et al., The effects of snow-N deposition and snowmelt dynamics on soil-N cycling in marginal terraced grasslands in the French Alps, Biogeochemistry, 2012, 108, 297–315

    Article  CAS  Google Scholar 

  17. Rixen C., Freppaz M., Stoeckli V., Huovinen C., Huovinen K., Wipf S., Altered snow density and chemistry change soil nitrogen mineralization and plant growth, Arct. Antarct. Alp. Res., 2008, 40, 568–575

    Article  Google Scholar 

  18. Wipf S., Rixen C., A review of snow manipulation experiments in Arctic and alpine tundra ecosystems, Polar Res., 2010, 29, 95–109

    Article  Google Scholar 

  19. Hédl R., Houška J., Banaš M., Zeidler M., Effects of skiing and slope gradient on topsoil properties in an alpine environment, Pol. J. Ecol., 2012, 60, 491–501

    Google Scholar 

  20. Rixen C., Stoeckli V., Ammann W., Does artificial snow production affect soil and vegetation of ski pistes? A review, Perspect. Plant Ecol. Evol.Syst., 2003, 5, 219–230

    Article  Google Scholar 

  21. Roux-Fouillet P., Wipf S., Rixen C., Long-term impacts of ski piste management on alpine vegetation and soils, J. Appl. Ecol., 2011, 48, 906–915

    Article  Google Scholar 

  22. Keller T., Pielmeier C., Rixen C., Gadient F., Gustafsson D., Staehli M., Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area, Ann. Glaciol., 2004, 38, 314–318

    Article  Google Scholar 

  23. Wipf S., Rixen C., Fischer M., Schmid B., Stoeckli V., Effects of ski piste preparation on alpine vegetation, J.Appl. Ecol., 2005, 42, 306–316

    Article  Google Scholar 

  24. Groffman P.M., Driscoll C.T., Fahey T.J., Hardy J.P., Fitzhugh R.D., Tierney G.L., Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 2001, 56, 191–213

    Article  CAS  Google Scholar 

  25. Anderson J.M., Hetherington S.L, Temperature, nitrogen availability and mixture effects on the decomposition of heather [Calluna vulgaris (L.) Hull] and bracken [Pteridium aquilinum (L.) Kuhn]_litters, Funct. Ecol., 1999, 13,suppl. 1, 116–124

    Article  Google Scholar 

  26. Shaw M.R., Harte J., Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change, Ecol. App., 2001, 11, 1206–1223

    Google Scholar 

  27. Gartner T.B., Cardon Z.G., Decomposition dynamics in mixed-species leaf litter, Oikos, 2004, 104, 230–246

    Article  Google Scholar 

  28. Andreyashkina N.I., Peshkova N.V., On assessing decomposition rates of plant debris and standard cellulose samples in tundra communities, Russ. J. Ecol., 2001, 32, 52–55

    Article  Google Scholar 

  29. Berg B., Kärenlampi L., Veum A.K., Comparisons of decomposition rates measured by means of cellulose, In: Wielgolaski F.E. (Ed.), Fennoscandian tundra ecosystems, Springer, Berlin-Heidelberg-New York, 1975

    Google Scholar 

  30. Jeník J., Výšková stupňovitost Hrubého Jeseníku: otázka alpínského stupně [Altitude zones in the Hrubý Jeseník Mts., the Alpine Zone], Campanula, 1972, 3, 45–52 (in Czech)

    Google Scholar 

  31. Treml V., Banaš M., (2008): The effect of exposure on alpine treeline position: a case study form the High Sudetes, Czech Republic. Arct. Antarct. Alp. Res., 2008, 40, 751–761

    Article  Google Scholar 

  32. Treml V., Banaš M., Alpine timberline in the High Sudeties, Acta Universitatis Carolinae, Geographica, Praha, 2000, 35, 83–99

    Google Scholar 

  33. Banaš M., Zeidler M., Duchoslav M., Hošek J., Growth of alpine lady-fern (Athyrium distentifolium) and plant species composition on a ski piste in the Hrubý Jeseník Mts., Czech Republic, Ann. Bot. Fenn., 2010, 47, 280–292

    Article  Google Scholar 

  34. Kašák J., Mazalová M., Šipoš J., Kuras T., The effect of alpine ski-slopes on epigeic beetles: does even a nature-friendly management make a change? J. Insect Conserv., 2013, 17, 975–988

    Article  Google Scholar 

  35. Lednický V., Podnebí Pradědu. [The climate of Mt. Praděd], Severni Morava, 1985, 49, 44–48, (in Czech)

    Google Scholar 

  36. Kubát K., Hrouda L., Chrtek J. jun., Kaplan Z., Kirschner J., Štěpánek J., Klíč ke květeně České republiky [Key to flora of the Czech Republic]. Academia, Praha, 2002, (in Czech)

    Google Scholar 

  37. Chytrý M., Vegetation of the Czech Republic. — 1. Grassland and heathland vegetation, Academia, Praha, 2007

    Google Scholar 

  38. Kočí M., Subalpine tall-forb vegetation (Mulgedio-Aconitetea) in the Czech Republic, Preslia, 2001, 73, 289–331

    Google Scholar 

  39. Kočí M., Subalpine tall-forb and deciduous-shrub vegetation, In: Chytrý M. (Ed.), Vegetation of the Czech Republic — 1. Grassland and heathland vegetation, Academia, Praha, 2007, (in Czech)

    Google Scholar 

  40. Kočí M., Alpine heathlands, In: Chytrý M. (Ed.), Vegetation of the Czech Republic — 1. Grassland and heathland vegetation, Academia, Praha, 2007

    Google Scholar 

  41. Bocock K.L., Gilbert O.J., The disappearance of leaf litter under different woodland conditions, Plant Soil, 1957, 9, 351–370

    Article  Google Scholar 

  42. Hobbie S.E., Temperature and plant species control over litter decomposition in Alaskan tundra, Ecol. Monogr., 1996, 66, 503–522

    Article  Google Scholar 

  43. Mackey J.M.L., Neal A.M., Harvesting, recording weight, area and length, In: Hendry G.A.F, Grime J.P. (Eds.), Methods in comparative plant ecology, a laboratory manual, Chapman and Hall, London, UK, 1993

    Google Scholar 

  44. Anderson J.M., Decomposition, In: Hendry G.A.F., Grime J.P. (Eds.), Methods in comparative plant ecology, Chapman and Hall, London, 1993

    Google Scholar 

  45. Wiegert R.G., Evans F.C., Primary production and the disappearance of dead vegetation on an old field in southeastern Michigan, Ecology, 1964, 45, 49–63

    Article  Google Scholar 

  46. Sokal R.R., Rohlf F.J., Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York, 1995

    Google Scholar 

  47. Sturm M., Holmgren J., Konig M., Morris K., The thermal conductivity of seasonal snow. J. Glaciol., 1997, 43, 26–41

    Google Scholar 

  48. Rixen C., Haeberli W., Stoeckli V., Ground temperatures under ski pistes with artificial and natural snow, Arct. Antarct. Alp. Res., 2004, 36, 419–427

    Article  Google Scholar 

  49. Baiderin V.V., Experimental modelling of ecological consequences of winter recreations, Sov. J. Ecol., 1981, 11, 140–146

    Google Scholar 

  50. Titus J.H., Ski slope vegetation of Mount Hood, Oregon, USA, Arct. Antarct. Alp. Res., 1999, 31, 283–292

    Article  Google Scholar 

  51. Mosimann T., Schneeanlagen in der Schweiz; aktueller Stand — Umwelteinflüsse — Empfehlungen [Snow facilities in Switzerland; present state — environmental consequences — recommendations], Materialien zur Physiogeographie 10, Geographisches Institut der Universtität Basel, Basel, 1987, (in German)

    Google Scholar 

  52. Jonasson S., Michelsen A., Schmidt I.K., Nielsen E.V., Responses in microbes and plants to changed temperature, nutrient and light regimes in the Arctic, 1999, Ecology, 80, 1828–1843

    Article  Google Scholar 

  53. Nadelhoffer K.J., Giblin A.E., Shawer G.R., Laundre J.A., Effects of temperature and substrate quality on element mineralization on six arctic soils, Ecology, 1991, 72, 242–253

    Article  Google Scholar 

  54. Wahren C.H.A., Walker M.D., Bret-Harte M.S., Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment, Glob. Change Biol., 2005, 11, 537–552

    Article  Google Scholar 

  55. Kuhn M., The nutrient cycle through snow and ice, a review, Aquat Sci, 2001, 63, 150–167

    Article  CAS  Google Scholar 

  56. Kuhn M., Haslhofer J., Nickus U., Schellander H., Seasonal development of ion concentration in a high alpine snow pack, Atmos Environ, 1998, 32, 4041–4051

    Article  CAS  Google Scholar 

  57. Körner C, Mountain biodiversity, its causes and function, Ambio, 2004, 13, 11–17

    Google Scholar 

  58. Cornelissen J.H.C., An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types, J. Ecol., 1996, 84, 573–582

    Article  Google Scholar 

  59. Cornelissen J.H., van Bodegom P.M, Aerts R., Callaghan T.V., van Logtestijn R.S., Alatalo J., et al., Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes, Ecol. Lett., 2007, 10, 619–627

    Article  PubMed  Google Scholar 

  60. Saccone P., Morin S., Colomb C., Baptist F., Bonneville J.M., Colace M.P. et al., The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows, Plant Soil, 2013, 363, 215–229

    Article  CAS  Google Scholar 

  61. Cornwell W.K., Cornelissen J.H.C., Amatangelo K., Dorrepaal E., Eviner V.T., Godoy O., et al., Plant species traits are the predominant control of litter decomposition rates within biomes worldwide, Ecol. Lett., 2008, 11, 1065–1071

    Article  PubMed  Google Scholar 

  62. Cortez J., Garnier E., Pérez-Harguindeguy N., Debussche M., Gillon D., Plant traits, litter quality and decomposition in a Mediterranean old-field succession, Plant Soil, 2007, 296, 19–34

    Article  CAS  Google Scholar 

  63. Haraguchi A., Hasegawa C., Hirayama A., Kojima H., Decomposition activity of peat soils in geogenous mires in Sasakami, central Japan, Eur. J. Soil Biol., 2003, 39, 191–196

    Article  CAS  Google Scholar 

  64. Sundqvist M.K., Giesler R., Wardle D.A., Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra, PLoS ONE, 2011

    Google Scholar 

  65. McHaffie H.S., Athyrium distentifolium Tausch ex Opiz (A. alpestre (Hoppe) Rylands ex T. Moorenon-Clairv.) including A. distentifolium var. flexile (Newman) Jermy, J. Ecol., 2005, 93, 839–851

    Article  Google Scholar 

  66. Drewnik M., The effect of environmental conditions on the decomposition rate of cellulose in mountain soils, Geoderma, 2006, 132, 116–130

    Article  CAS  Google Scholar 

  67. Tůma I., Variation in the activity of cellulolytic microorganisms in several ecosystems of the Beskydy Mts., Ekologia (Bratislava), 1998, 17, 316–326

    Google Scholar 

  68. Gerdol R., Anfodillo T., Gualmini M., Cannone N., Bragazza L., Brancaleoni L., Biomass distribution of two subalpine dwarf-shrubs in relation to soil moisture and nutrient content, J. Veg. Sci., 2004, 15, 457–464

    Article  Google Scholar 

  69. Johansson M.B., Biomass, decomposition and nutrient release of Vaccinium myrtillus leaf litter in four forest stands, Scand. J. Forest. Res., 1993, 8, 466–479

    Article  Google Scholar 

  70. Brooks P.D., Williams M.V., Schmidt S.K, Microbial activity under Alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 1996, 32, 93–113

    Google Scholar 

  71. O’Lear H.A., Seastedt T.R, Landscape patterns of litter decomposition in alpine tundra, Oecologia, 1994, 99, 95–101

    Article  Google Scholar 

  72. Bryant D.M., Holland E.A., Seastedt T.R., Walker M.D., Analysis of litter decomposition in an alpine tundra, Can. J. Botany, 1998, 76, 1295–1304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Zeidler.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidler, M., Duchoslav, M. & Banaš, M. Effect of altered snow conditions on decomposition in three subalpine plant communities. cent.eur.j.biol. 9, 811–822 (2014). https://doi.org/10.2478/s11535-014-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0312-3

Keywords

Navigation