Skip to main content
Log in

The effect of CO2 on the measurement of 220Rn and 222Rn with instruments utilising electrostatic precipitation

  • Research article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In some volcanic systems, thoron and radon activity and CO2 flux, in soil and fumaroles, show a relationship between (220Rn/222Rn) and CO2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux.

In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, known 222Rn (radon) and 220Rn (thoron), and a controllable percentage of CO2 in the carrier gas. Our results show that for every percentage of CO2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cigolini, C., P. Poggi, M. Ripepe, M. Laiolo, C. Ciamberlini, D. Delle Donne, G. Ulivieri, D. Coppola, G. Lacanna, E. Marchetti, D. Piscopo, and R. Genco (2009), Radon surveys and real-time monitoring at Stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on 222Rn degassing, J. Volcanol. Geoth. Res. 184,3–4, 381–388, DOI: 10.1016/j.jvolgeores.2009.04.019.

    Article  Google Scholar 

  • D’Amore, F., and J.C. Sabroux (1976), Signification de la présence de radon 222dans le fluides géothermiques, B. Volcanol. 40,2, 106–115, DOI: 10.1007/BF02599855 (in French).

    Article  Google Scholar 

  • Giammanco, S., K.W.W. Sims, and M. Neri (2007), Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture, Geochem. Geophys. Geosys. 8,10, Q10001, DOI: 10.1029/2007GC001644.

    Article  Google Scholar 

  • Giammanco, S., G. Immè, G. Mangano, D. Morelli, and M. Neri (2009), Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy), Appl. Radiat. Isotopes 67,1, 178–185, DOI: 10.1016/j.apradiso.2008.09.007.

    Article  Google Scholar 

  • Huxol, S., M.S. Brenwald, E. Hoehn, and R. Kipfer (2012), On the fate of 220Rn in soil material in dependence of water content: Implications from field and laboratory experiments, Chem. Geol. 298–299, 116–122, DOI: 10.1016/j.chemgeo.2012.01.002.

    Article  Google Scholar 

  • Laiolo, M., C. Cigolini, D. Coppola, and D. Piscopo (2012), Developments in realtime radon monitoring at Stromboli volcano, J. Environ. Radioactiv. 105, 21–29, DOI: 10.1016/j.jenvrad.2011.10.006.

    Article  Google Scholar 

  • Liotta, M., A. Paonita, A. Caracausi, M. Martelli, A. Rizzo, and R. Favara (2010), Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy), Chem. Geol. 278,1–2, 92–104, DOI: 10.1016/j.chemgeo.2010.09.004.

    Article  Google Scholar 

  • Martelli, M., A. Caracausi, A. Paonita, and A. Rizzo (2008), Geochemical variations of air-free crater fumaroles at Mt. Etna: New inferences for forecasting shallow volcanic activity, Geophys. Res. Lett. 35,21, L21302, DOI: 10.1029/2008GL035118.

    Article  Google Scholar 

  • Martinelli, G. (1998), Gas geochemistry and 222Rn migration process, Radiat. Prot. Dosim. 78,1, 77–82, DOI: 10.1093/oxfordjournals.rpd.a032338.

    Article  Google Scholar 

  • Neri, M., S. Giammanco, E. Ferrera, G. Patanè, and V. Zanon (2011), Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy), J. Environ. Radioactiv. 102,9, 863–870, DOI: 10.1016/j.jenvrad.2011.05.002.

    Article  Google Scholar 

  • Pérez, N.M., P.A. Hernández, E. Padrón, G. Melián, R. Marrero, G. Padilla, J. Barrancos, and D. Nolasco (2007), Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands, Pure Appl. Geophys. 164,12, 2431–2448, DOI: 10.1007/s00024-007-0280-x.

    Article  Google Scholar 

  • Tuccimei, P., and M. Soligo (2008), Correcting for CO2 interference in soil radon flux measurements, Radiat. Meas. 43,1, 102–105, DOI: 10.1016/j.radmeas.2007.05.056.

    Article  Google Scholar 

  • Yang, T.F., H.Y. Wen, C.C. Fu, H.F. Lee, and T.F. Lan (2011), Soil radon flux and concentrations in hydrothermal area of the Tatun Volcano Group, Northern Taiwan, Geochem. J. 45,6, 483–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Lane-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane-Smith, D., Sims, K.W.W. The effect of CO2 on the measurement of 220Rn and 222Rn with instruments utilising electrostatic precipitation. Acta Geophys. 61, 822–830 (2013). https://doi.org/10.2478/s11600-013-0107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0107-3

Key words

Navigation