Skip to main content
Log in

Validation of videodensitometric myocardial perfusion assessment

Research Article

  • Research Article
  • Published:
Central European Journal of Medicine

Abstract

Introduction

Invasive methods for assessment of coronary microcirculatory function are time- and instrumentation-consuming tools. Recently, novel computer-assisted videodensitometric methods have been demonstrated to provide quantitative information on myocardial (re)perfusion. The aim of the present prospective study was to evaluate the accuracy of videodensitometry-derived perfusion parameters in patients with stable angina undergoing elective coronary angiography.

Methods

The study comprised 13 patients with borderline epicardial coronary artery stenosis (40–70%). Coronary flow reserve and index of microcirculatory resistance were measured by using an intracoronary pressure and temperature sensor-tipped guidewire. A videodensitometric quantitative parameter of myocardial perfusion was calculated by the ratio of maximal density (Gmax) and the time to reach maximum density (Tmax) of the time-density curves in regions of interest on conventional coronary angiograms. Myocardium perfusion reserve was calculated as a ratio of hyperemic and baseline Gmax/Tmax.

Results

At hyperemia a significant increase in Gmax/Tmax could be observed (p <0.0001). Significant correlations were found between myocardium perfusion reserve and coronary flow reserve (r =0.82, p =0.0008) and between hyperemic Gmax/Tmax and hyperemic index of microcirculatory resistance (r =−0.72, p =0.0058).

Conclusions

Videodensitometric Gmax/Tmax assessment seems to be a promising method to assess the myocardial microcirculatory state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camici P.G., Crea F.N., Coronary microvascular dysfunction, N. Engl. J. Med., 2007, 356, 830–840

    Article  PubMed  CAS  Google Scholar 

  2. Knaapen P., Camici P.G., Marques K.M., Nijveldt R., Bax J.J., Westerhof N., et al., Coronary microvascular resistance: methods for its quantification in humans, Basic Res. Cardiol., 2009, 104, 485–98.

    Article  PubMed  Google Scholar 

  3. Kern M.J., Coronary physiology revisited: practical insights from the cardiac catheterization laboratory, Circulation, 2000, 101, 1344–1351

    Article  PubMed  CAS  Google Scholar 

  4. Fearon W.F., Balsam L.B., Farouque H.M., Caffarelli A.D., Robbins R.C., Fitzgerald P.J,, Novel index for invasively assessing the coronary microcirculation, Circulation, 2003, 107, 3129–3132

    Article  PubMed  Google Scholar 

  5. Aarnoudse W., Fearon W.F., Manoharan G., Geven M., van de Vosse F., Rutten M., et al., Epicardial stenosis severity does not affect minimal microcirculatory resistance, Circulation, 2004, 110, 2137–2142

    Article  PubMed  Google Scholar 

  6. Ng M.K., Yeung A.C., Fearon W.F., Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve, Circulation, 2006, 113, 2054–2061

    Article  PubMed  Google Scholar 

  7. van’t Hof A.W., Liem A., Suryapranata H., Hoorntje J.C., de Boer M.J., Zijlstra F., Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group, Circulation, 1998, 97, 2302–2306

    Article  Google Scholar 

  8. Gibson C.M., Cannon C.P., Murphy S.A., Ryan K.A., Mesley R., Marble S.J. et al., Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs, Circulation, 2000, 101, 125–130

    Article  PubMed  CAS  Google Scholar 

  9. Korosoglou G., Haars A., Michael G., Erbacher M., Hardt S., Giannitsis E. et al., Quantitative evaluation of myocardial blush to assess tissue level reperfusion in patients with acute ST-elevation myocardial infarction: incremental prognostic value compared with visual assessment, Am. Heart. J., 2007, 153, 612–620

    Article  PubMed  Google Scholar 

  10. Haeck J.D., Gu Y.L., Vogelzang M., Bilodeau L., Krucoff M.W., Tijssen J.G. et al,. Feasibility and applicability of computer-assisted myocardial blush quantification after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction, Catheter Cardiovasc. Interv., 2010, 75, 701–706

    Article  PubMed  Google Scholar 

  11. Vogelzang M., Vlaar P.J., Svilaas T., Amo D., Nijsten M.W., Zijlstra F., Computer-assisted myocardial blush quantification after percutaneous coronary angioplasty for acute myocardial infarction: a substudy from the TAPAS trial, Eur. Heart. J., 2009, 30, 594–599

    Article  PubMed  Google Scholar 

  12. Ungi T., Ungi I., Jónás Z., Sasi V., Lassó A., Zimmermann Z. et al., Myocardium selective densitometric perfusion assessment after acute myocardial infarction, Cardiovasc. Revasc. Med., 2009, 10, 49–54

    Article  PubMed  Google Scholar 

  13. Ungi T., Zimmermann Z., Balázs E., Lassó A., Ungi I., Forster T. et al,. Vessel masking improves densitometric myocardial perfusion assessment, Int. J. Cardiovasc. Imaging, 2009, 25, 229–236

    Article  PubMed  Google Scholar 

  14. Pijls N.H., De Bruyne B., Smith L., Aarnoudse W., Barbato E., Bartunek J. et al., Coronary thermodilution to assess flow reserve: validation in humans, Circulation, 2002, 105, 2482–2486

    Article  PubMed  Google Scholar 

  15. Chelliah R., Senior R., An update on contrast echocardiography, Minerva Cardioangiol., 2009, 57, 483–493

    PubMed  CAS  Google Scholar 

  16. Nagel E., Lima J.A., George R.T., Kramer CM., Newer methods for noninvasive assessment of myocardial perfusion: cardiac magnetic resonance or cardiac computed tomography?, JACC Cardiovasc. Imaging, 2009, 2, 656–660

    Article  PubMed  Google Scholar 

  17. Hachamovitch R., Berman D.S., Kiat H., Cohen I., Cabico J.A., Friedman J. et al., Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification, Circulation, 1996, 93, 905–914

    Article  PubMed  CAS  Google Scholar 

  18. Al-Mallah M.H., Sitek A., Moore S.C., Di Carli M., Dorbala S., Assessment of myocardial perfusion and function with PET and PET/CT, J. Nucl. Cardiol., 2010, 17, 498–513

    Article  PubMed  Google Scholar 

  19. Blankstein R., Di Carli M.F., Integration of coronary anatomy and myocardial perfusion imaging, Nat. Rev. Cardiol., 2010, 7, 226–236

    Article  PubMed  Google Scholar 

  20. Miller J.M., Rochitte C.E., Dewey M., Arbab-Zadeh A., Niinuma H., Gottlieb I. et al., Diagnostic performance of coronary angiography by 64-row CT, N. Engl. J. Med., 2008, 359, 2324–2336

    Article  PubMed  CAS  Google Scholar 

  21. Wijns W., De Bruyne B., Vanhoenacker P.K., What does the clinical cardiologist need from noninvasive cardiac imaging: is it time to adjust practices to meet evolving demands?, Nucl. Cardiol., 2007, 14, 366–370

    Article  Google Scholar 

  22. Leung D.Y., Leung M., Non-invasive/invasive imaging: significance and assessment of coronary microvascular dysfunction, Heart, 2011, 97, 587–595

    Article  PubMed  Google Scholar 

  23. Korosoglu G., Riedle N., Erbacher M., Dengler T.J., Zugck C., Rottbauer W. et al., Quantitative myocardial blush grade for the detection of cardiac allograft vasculopathy. Am Heart J, 2010, 159, 643–651

    Article  Google Scholar 

  24. Havers J., Haude M., Erbel R., Spiller P., X-ray densitometric measurement of myocardial perfusion reserve in symptomatic patients without angiographically detectable coronary stenoses, Herz, 2008, 33, 223–232

    Article  PubMed  Google Scholar 

  25. Pijls N.H., Van Gelder B., Van der Voort P., Peels K., Bracke F.A., Bonnier H.J. et al., Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow, Circulation, 1995, 92, 3183–3193

    Article  PubMed  CAS  Google Scholar 

  26. Abaci A., Oguzhan A., Eryol N.K., Ergin A., Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility, Circulation,1999, 100, 2219–2223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Nemes.

About this article

Cite this article

Nagy, F.T., Nemes, A., Szűcsborus, T. et al. Validation of videodensitometric myocardial perfusion assessment. cent.eur.j.med 8, 600–607 (2013). https://doi.org/10.2478/s11536-013-0168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11536-013-0168-3

Keywords

Navigation