Skip to main content
Log in

Entanglement in the second quantization formalism

  • Published:
Central European Journal of Physics

Abstract

We study properties of entangled systems in the (mainly non-relativistic) second quantization formalism. This is then applied to interacting and non-interacting bosons and fermions and the differences between the two are discussed. We present a general formalism to show how entanglement changes with the change of modes of the system. This is illustrated with examples such as the Bose condensation and the Unruh effect. It is then shown that a non-interacting collection of fermions at zero temperature can be entangled in spin, providing that their distances do not exceed the inverse Fermi wavenumber. Beyond this distance all bipartite entanglement vanishes, although classical correlations still persist. We compute the entanglement of formation as well as the mutual information for two spin-correlated electrons as a function of their distance. The analogous, non-interacting collection of bosons displays no entanglement in the internal degrees of freedom. We show how to generalize our analysis of the entanglement in the internal degrees of freedom to an arbitrary number of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Vedral: “The role of relative entropy in quantum information theory”, Rev. Mod. Phys., Vol. 74, (2002), pp. 197–234.

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Zanardi: “Quantum entanglement in fermionic lattices”, Phys. Rev., Vol. A 65, (2002), pp. 042101. see also Y. Shi. “Quantum Entanglement of Identical Particles”, quant-ph/0205069, (2003) for a bosonic systems a similar argument was presented by S.J. van Enk, “Entanglement of photons”, Phys. Rev., vol. A 67, (2003), pp. 022303.

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Schliemann, D. Loss, A.H. MacDonald: “Double-Occupancy Errors, Adiabaticity, and Entanglement of Spin-Qubits in Quantum Dots”, Phys. Rev., Vol. B 63, (2001), pp. 085311. J. Schliemann, J.I. Cirac, M. Kus, M. Lewenstein, D. Loss: “Quantum Correlations in Two-Fermion Systems”, Phys. Rev., Vol. A 64, (2001), pp. 022303. K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein: “Quantum Correlations in Systems of Indistinguishable Particles”, Annals of Physics, Vol. 299, (2002), pp. 88–127.

    Article  Google Scholar 

  4. S. Weinberg: The Quantum Theory of Fields, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  5. D. Han, Y.S. Kim, M.E. Noz: “Illustrative example of Feynman's rest of the universe”, Am. J. Physics, Vol. 67 (1999), pp. 61–66.

    Article  ADS  Google Scholar 

  6. N.D. Birrell and P.C.W. Davies: Quantum Fields in Curved Space, Cambridge University Press, Cambridge, 1981.

    MATH  Google Scholar 

  7. L. Mandel and E. Wolf: Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  8. E.. Lifshitz and L.P. Pitaevskii: Statistical Physics (Part Two), Pergamon Press, Oxford 1980.

    Google Scholar 

  9. J.M. Vogels, K. Xu. Raman, J. R. Abo-Shaeer, W. Ketterle: “Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas”, Phys. Rev. Lett., Vol. 88, (2002), pp. 060402.

    Article  ADS  Google Scholar 

  10. S.A. Fulling: “Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time”, Phys. Rev., Vol. D 7, (1972), pp. 2850–2862.

    Google Scholar 

  11. S.W. Hawking: “Black Hole Explosions?”, Nature, Vol. 248, (1974), pp. 30–31.

    Article  ADS  Google Scholar 

  12. L. Parker: “Quantized Fields and Particle Creation in Expanding Universes.I”, Phys. Rev., Vol. 183, (1969), pp. 1057–1067.

    Article  MATH  ADS  Google Scholar 

  13. M. Srednicki: “Entropy and area”, Phys. Rev. Lett., Vol. 71, (1993), pp. 666–669.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. R. Wald: “The Thermodynamics of Black Holes”, Living Reviews of Relativity, (2001), can be found athttp://www.livingreviews.org.

  15. M. Horodecki, P. Horodecki, R. Horodecki: “Separability of mixed states: Necessary and sufficient conditions”, Phys. Lett. Vol. A 223, (1996), pp. 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  16. W.K. Wootters: “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., Vol.80, (1997), pp. 2245–2248.

    Article  ADS  Google Scholar 

  17. Y. Omar, N. Paunković, S. Bose, V. Vedral: “Spin-space entanglement transfer and quantum statistics”, Phys. Rev. Vol. A, (2002), pp. 062305. J.R. Gittings and A.J. Fisher: “Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation-number basis”, Phys. Rev., Vol. A 66, (2002), pp. 032305.

    Google Scholar 

  18. C.N. Yang: “Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors”, Rev. Mod. Phys., Vol. 34, (1962), pp. 694–704.

    Article  ADS  Google Scholar 

  19. T.D. Lee and C.N. Yang: “Many-Body Problem in Quantum Statistical Mechanics. I. General Formulation”, Phys. Rev., Vol. 113, (1959), pp. 1165–1177.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. N. Paunković, Y. Omar, S. Bose, V. Vedral: “Entanglement concentration using quantum statistics”, Phys. Rev. Lett. Vol. 88, (2002), pp. 187903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Vedral, V. Entanglement in the second quantization formalism. centr.eur.j.phys. 1, 289–306 (2003). https://doi.org/10.2478/BF02476298

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02476298

Key words

PACS (2000)

Navigation