Skip to main content
Log in

Relationship between aboveground and belowground biomass ofSpartina alterniflora (Smooth Cordgrass)

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Aboveground and belowground biomass ofSpartina alterniflora were harvested during the period of peak aerial biomass from six sites along a latitudinal gradient ranging from Georgia to Nova Scotia. An equation relating live aboveground to live belowground biomass for short-form plants was formulated, using data collected in Delaware marshes. When data from the other sites were substituted into the equation, the mean live belowground biomass it predicted was within 15% of the value determined by harvesting at four of the five sites. At all sites, short-form plant live belowground biomass was concentrated in the upper 10 cm. Dead belowground biomass was located mostly in the top 15 cm in southern marshes, but was more evenly distributed with depth in northern marshes. Results were more ambiguous for tall-form plants, probably because of greater spatial variability in biomass distribution, and greater seasonal biomass dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bartlett, D. S., M. A. Hardisky, R. W. Johnson, M. F. Gross, V. Klemas, andJ. M. Hartman. 1988. Continental-scale variability in vegetation reflectance and its relationship to canopy morphology.International Journal of Remote Sensing 9:1223–1241.

    Article  Google Scholar 

  • Bertness, M. D. 1985. Fiddler crab regulation ofSpartina alterniflora production on a New England salt marsh.Ecology 66:1042–1055.

    Article  Google Scholar 

  • Bertness, M. D. 1988. Peat accumulation and the success of marsh plants.Ecology 69:703–713.

    Article  Google Scholar 

  • Buresh, R. J., R. D. DeLaune, andW. H. Patrick, Jr. 1980. Nitrogen and phosphorus distribution and utilization bySpartina alterniflora in a Louisiana Gulf Coast marsh.Estuaries 3:111–121.

    Article  Google Scholar 

  • Chalmers, A. G. 1979. The effects of fertilization on nitrogen distribution in aSpartina alterniflora salt marsh.Estuarine and Coastal Marine Science 8:327–337.

    Article  CAS  Google Scholar 

  • Chanton, J. P., C. S. Martens, andC. A. Kelley. 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments.Limnology and Oceanography 34:807–819.

    CAS  Google Scholar 

  • Cicerone, R. J. andJ. D. Shetter. 1981. Sources of atmospheric methane: Measurements in rice paddies and a discussion.Journal of Geophysical Research 86:7203–7209.

    Article  CAS  Google Scholar 

  • Cooper, D. J., W. Z. de Mello, W. J. Cooper, R. G. Zika, E. S. Saltzman, J. M. Prospero, andD. L. Savoie. 1987. Shortterm variability in biogenic sulphur emissions from a FloridaSpartina alterniflora marsh.Atmospheric Environment 21:7–12.

    Article  CAS  Google Scholar 

  • Curtis, P. S., B. G. Drake, andD. F. Whigham. 1989. Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ.Oecologia 78:297–301.

    Article  Google Scholar 

  • Dacey, J. W. H. andN. V. Blough. 1987. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide.Geophysical Research Letters 14:1246–1249.

    Article  CAS  Google Scholar 

  • Dacey, J. W. H., G. M. King, andS. G. Wakeham. 1987. Factors controlling emission of dimethylsulphide from salt marshes.Nature 330:643–645.

    Article  CAS  Google Scholar 

  • Dacey, J. W. H. andM. J. Klug. 1979. Methane efflux from lake sediments through water lilies.Science 203:1253–1254.

    Article  CAS  Google Scholar 

  • Dame, R. F. andP. D. Kenny. 1986. Variability ofSpartina alterniflora primary production in the euhaline North Inlet estuary.Marine Ecology Progress Series 32:71–80.

    Article  Google Scholar 

  • Davidson, R. L. 1969. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover.Annals of Botany 33:561–569.

    Google Scholar 

  • de Mello, W. Z., D. J. Cooper, W. J. Cooper, E. S. Saltzman, R. G. Zika, D. L. Savoie, andJ. M. Prospero. 1987. Spatial and diel variability in the emissions of some biogenic sulfur compounds from a FloridaSpartina alterniflora coastal zone.Atmospheric Environment 21:987–990.

    Article  Google Scholar 

  • Ellison, A. M., M. D. Bertness, andT. Miller. 1986. Seasonal patterns in the belowground biomass ofSpartina alterniflora (Gramineae) across a tidal gradient.American Journal of Botany 73:1548–1554.

    Article  Google Scholar 

  • Freshwater, D. W. 1988. Relative genome-size differences among populations ofSpartina alterniflora Loisel (Poaceae) along East and Gulf coasts of U.S.A.Journal of Experimental Marine Biology and Ecology 120:239–246.

    Article  Google Scholar 

  • Gallagher, J. L. 1983. Seasonal patterns in recoverable underground reserves inSpartina alterniflora Loisel.American Journal of Botany 70:212–215.

    Article  Google Scholar 

  • Gallagher, J. L. andR. W. Howarth. 1987. Seasonal differences inSpartina recoverable underground reserves in the Great Sippewissett Marsh in Massachusetts.Estuarine Coastal and Shelf Science 25:313–319.

    Article  Google Scholar 

  • Gallagher, J. L. andF. G. Plumley. 1979. Underground biomass profiles and productivity in Atlantic coastal marshes.American Journal of Botany 66:156–161.

    Article  Google Scholar 

  • Gallagher, J. L., G. F. Somers, D. M. Grant, andD. M. Seliskar. 1988. Persistent differences in two forms ofSpartina alterniflora: A common garden experiment.Ecology 69:1005–1008.

    Article  Google Scholar 

  • Good, R. E., N. F. Good, andB. R. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component, p. 139–157.In V. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Gordon, D. C., Jr.,P. J. Cranford, andC. Desplanque. 1985. Observations on the ecological importance of salt marshes in the Cumberland Basin, a macrotidal estuary in the Bay of Fundy.Estuarine Coastal and Shelf Science 20:205–227.

    Article  Google Scholar 

  • Gross, M. F., M. A. Hardisky, V. Klemas, andP. L. Wolf. 1987. Quantification of biomass of the marsh grassSpartina alterniflora Loisel using Landsat Thematic Mapper imagery.Photogrammetric Engineering and Remote Sensing 53:1577–1583.

    Google Scholar 

  • Haines, E. B. 1979. Growth dynamics of cordgrass,Spartina alterniflora Loisel., on control and sewage sludge fertilized plots in a Georgia salt marsh.Estuaries 2:50–53.

    Article  CAS  Google Scholar 

  • Hardisky, M. A., F. C. Daiber, C. T. Roman, andV. Klemas. 1984. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh.Remote Sensing of Environment 16:91–106.

    Article  Google Scholar 

  • Hardisky, M. A., R. M. Smart, andV. Klemas. 1983. Seasonal spectral characteristics and aboveground biomass of the tidal marsh plant,Spartina alterniflora.Photogrammetric Engineering and Remote Sensing 49:85–92.

    Google Scholar 

  • Hole, C. C., T. H. Thomas, A. Barnes, P. A. Scott, andW. E. F. Rankin. 1984. Dry matter distribution between shoot and storage root of carrot, parsnip, radish, and red beet.Annals of Botany 53:625–631.

    Google Scholar 

  • Howarth, R. W. andJ. E. Hobbie. 1982. The regulation of decomposition and heterotrophic microbial activity in salt marsh soils: A review, p. 183–207.In V. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andJ. M. Teal. 1985. Annual carbon mineralization and belowground production ofSpartina alterniflora in a New England salt marsh.Ecology 66:595–605.

    Article  CAS  Google Scholar 

  • Keefe, C. W. 1972. Marsh production: A summary of the literature.Contributions in Marine Science 16:163–181.

    CAS  Google Scholar 

  • King, G. M. 1988. Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh.Limnology and Oceanography 33:376–390.

    Article  CAS  Google Scholar 

  • Levin, S. A., H. A. Mooney, andC. Field. 1989. The dependence of plant root: shoot ratios on internal nitrogen concentration.Annals of Botany 64:71–75.

    Google Scholar 

  • Mendelssohn, I. A. andK. L. Marcellus. 1976. Angiosperm production of three Virginia marshes in various salinity and soil nutrient regimes.Chesapeake Science 17:15–23.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A. andK. L. McKee. 1988.Spartina alterniflora die-back in Louisiana: Time-course investigation of soil waterlogging effects.Journal of Ecology 76:509–521.

    Article  Google Scholar 

  • Mooring, M. T., A. W. Cooper, andE. D. Seneca. 1971. Seed germination response and evidence for height ecophenes inSpartina alterniflora from North Carolina.American Journal of Botany 58:45–55.

    Article  Google Scholar 

  • Niering, W. A. andR. S. Warren. 1980. Vegetation patterns and processes in New England salt marshes.BioScience 30:301–307.

    Article  Google Scholar 

  • Patriquin, D. G. andC. R. McClung. 1978. Nitrogen accretion, and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova ScotianSpartina alterniflora stand.Marine Biology 47:227–242.

    Article  Google Scholar 

  • Pezeshki, S. R., R. D. DeLaune, andC. W. Lindau. 1988. Interaction among sediment anaerobiosis, nitrogen uptake and photosynthesis ofSpartina alterniflora.Physiologia Plantarum 74:561–565.

    Article  CAS  Google Scholar 

  • Piper, J. K. 1989. Distribution of dry mass between shoot and root in nine understory species.American Midland Naturalist 122:114–119.

    Article  Google Scholar 

  • Schubauer, J. P. andC. S. Hopkinson. 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia.Limnology and Oceanography 29:1052–1065.

    Google Scholar 

  • Schutz, H., W. Seiler, andR. Conrad. 1989. Processes involved in formation and emission of methane in rice paddies.Biogeochemistry 7:33–53.

    Article  CAS  Google Scholar 

  • Sebacher, D. I., R. C. Harriss, andK. B. Bartlett. 1985. Methane emissions to the atmosphere through aquatic plants.Journal of Environmental Quality 14:40–46.

    Article  CAS  Google Scholar 

  • Seiler, W., A. Holzapfel-Pschorn, R. Conrad, andD. Scharffe. 1984. Methane emission from rice paddies.Journal of Atmospheric Chemistry 1:241–268.

    Article  CAS  Google Scholar 

  • Seliskar, D. M. 1983. Root and rhizome distribution as an indicator of upper salt marsh wetland limits.Hydrobiologia 107:231–236.

    Article  Google Scholar 

  • Seneca, E. D. 1974. Germination and seedling response of Atlantic and Gulf coast populations ofSpartina alterniflora.American Journal of Botany 61:947–956.

    Article  Google Scholar 

  • Shea, M. L., R. S. Warren, andW. A. Niering. 1975. Biochemical and transplantation studies of the growth form ofSpartina alterniflora on Connecticut salt marshes.Ecology 56:461–466.

    Article  CAS  Google Scholar 

  • Smart, R. M. 1986. Intraspecific competition and growth form differentiation of the salt marsh plant,Spartina alterniflora Loisel. Ph. D. Dissertation, University of Delaware. Newark, Delaware. 283 p.

    Google Scholar 

  • Smith, K. K., R. E. Good, andN. F. Good. 1979. Production dynamics for above and belowground components of a New JerseySpartina alterniflora tidal marsh.Estuarine and Coastal Marine Science 9:189–201.

    Article  CAS  Google Scholar 

  • Somers, G. F. andD. Grant. 1981. Influence of seed source on phenology of flowering ofSpartina alterniflora Loisel. and the likelihood of cross-pollination.American Journal of Botany 68:6–9.

    Article  Google Scholar 

  • Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: A review.Contributions in Marine Science 20:47–68.

    Google Scholar 

  • Valiela, I., J. M. Teal, andW. G. Deuser. 1978. The nature of growth forms in the salt marsh grassSpartina alterniflora.American Naturalist 112:461–470.

    Article  Google Scholar 

  • Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnology and Oceanography 21:245–252.

    Google Scholar 

  • Whigham, D. F. andR. L. Simpson. 1978. The relationship between aboveground and belowground biomass of freshwater tidal wetland macrophytes.Aquatic Botany 5:355–364.

    Article  Google Scholar 

  • Wilson, J. O., P. M. Crill, K. B. Bartlett, D. I. Sebacher, R. C. Harriss, andR. L. Sass. 1989. Seasonal variation of methane emissions from a temperate swamp.Biogeochemistry 8:55–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, M.F., Hardisky, M.A., Wolf, P.L. et al. Relationship between aboveground and belowground biomass ofSpartina alterniflora (Smooth Cordgrass). Estuaries 14, 180–191 (1991). https://doi.org/10.2307/1351692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1351692

Keywords

Navigation