Skip to main content
Log in

Contemporary Management of Uncomplicated Urinary Tract Infections

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Uncomplicated urinary tract infections (uUTIs) are common in adult women across the entire age spectrum, with mean annual incidences of approximately 15% and 10% in those aged 15–39 and 40–79 years, respectively. By definition, UTIs in males or pregnant females and those associated with risk factors known to increase the risk of infection or treatment failure (e.g. acquisition in a hospital setting, presence of an indwelling urinary catheter, urinary tract instrumentation/interventions, diabetes mellitus or immunosuppression) are not considered herein.

The majority of uUTIs are caused by Escherichia coli (70–95%), with Proteus mirabilis, Klebsiella spp. and Staphylococcus saprophyticus accounting for 1–2%, 1–2% and 5–10% of infections, respectively. If clinical signs and symptoms consistent with uUTI are present (e.g. dysuria, frequency, back pain or costovertebral angle tenderness) and there is no vaginal discharge or irritation present, the likelihood of uUTI is >90–95%. Laboratory testing (i.e. urinary nitrites, leukocyte esterase, culture) is not necessary in this circumstance and empirical treatment can be initiated.

The ever-increasing incidence of antimicrobial resistance of the common uropathogens in uUTI has been and is a continuing focus of intensive study. Resistance to cotrimoxazole (trimethoprim/sulfamethoxazole) has made the empirical use of this drug problematic in many geographical areas. If local uropathogen resistance rates to cotrimoxazole exceed 10–25%, empirical cotrimoxazole therapy should not be utilized (fluoroquinolones become the new first-line agents). In a few countries, uropathogen resistance rates to the fluoroquinolones now exceed 10–25%, rendering empirical use of fluoroquinolones problematic. With the exception of fosfomycin (a second-line therapy), single-dose therapy is not recommended because of suboptimal cure rates and high relapse rates. Cotrimoxazole and the fluoroquinolones can be administered in 3-day regimens. Nitrofurantoin, a second-line therapy, should be given for 7 days. β-Lactams are not recommended because of suboptimal clinical and bacteriological results compared with those of non-β-lactams. If a β-lactam is chosen, it should be given for 7 days.

Management of uUTIs can frequently be triaged to non-physician healthcare personnel without adverse clinical consequences, resulting in substantial cost savings. It can be anticipated that the optimal approach to the management of uUTIs will change substantially in the future as a consequence of antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Richards DA, Toop LJ, Chambers ST, et al. Antibiotic resistance in uncomplicated urinary tract infection: problems with interpreting cumulative resistance rates from local community laboratories. New Zealand Med J 2002 Jan 25; 115(1146): 12–4

    PubMed  Google Scholar 

  2. Car J. Urinary tract infections in women: diagnosis and management in primary care. BMJ 2006 Jan 14; 332(7533): 94–7

    PubMed  Google Scholar 

  3. Czaja CA, Hooton TM. Update on acute uncomplicated urinary tract infection in women. Postgrad Med 2006 Jun–Jul; 119(1): 39–45

    PubMed  Google Scholar 

  4. Foxman B, Brown P. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect Dis Clin North Am 2003 Jun; 17(2): 227–41

    PubMed  Google Scholar 

  5. Bass 3rd PF, Jarvis JA, Mitchell CK. Urinary tract infections. Prim Care Clin 2003 Mar; 30(1): 41–61

    Google Scholar 

  6. Ki M, Park T, Choi BY, et al. The epidemiology of acute pyelonephritis in South Korea, 1997–1999. Am J Epidemiol 2004; 160: 985–93

    PubMed  Google Scholar 

  7. Laupland KB, Ross T, Pitout JD, et al. Community-acquired urinary tract infections: a population-based assessment. Infection 2007 Jun; 35(3): 150–3

    PubMed  CAS  Google Scholar 

  8. Hooton TM. The current management strategies for community-acquired urinary tract infection. Infect Dis Clin North Am 2003 Jun; 17(2): 303–32

    PubMed  Google Scholar 

  9. Naber KG, Bergman B, Bishop MC, et al. EAU guidelines for the management of urinary and male genital tract infections. Eur Urol 2001; 40: 576–88

    PubMed  CAS  Google Scholar 

  10. Ferry SA, Holm SE, Stenlund H, et al. The natural course of uncomplicated lower urinary tract infection in women illustrated by a randomized placebo controlled study. Scand J Infect Dis 2004; 36(4): 296–301

    PubMed  Google Scholar 

  11. Godaly G, Svanborg C. Urinary tract infections revisited. Kidney Int 2007 Apr; 71(8): 721–3

    PubMed  CAS  Google Scholar 

  12. Bullitt E, Makowski L. Structure polymorphism of bacterial adhesion pili. Nature 1995; 373: 164–7

    PubMed  CAS  Google Scholar 

  13. Bergsten G, Wullt B, Schembri MA, et al. Do type 1 fimbriae promote inflammation in the human urinary tract? Cell Microbiol 2007 Jul; 9(7): 1766–81

    PubMed  CAS  Google Scholar 

  14. Ulett GC, Valle J, Beloin C, et al. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immunol 2007 Jul; 75(7): 3233–44

    CAS  Google Scholar 

  15. Zasloff M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol 2007; 18: 2810–6

    PubMed  CAS  Google Scholar 

  16. O’Brien K, Hillier S, Simpson S, et al. An observational study of empirical antibiotics for adult women with uncomplicated UTI in general practice. J Antimicrob Chemother 2007 Jun; 59(6): 1200–3

    PubMed  Google Scholar 

  17. Nys S, van Merode T, Bartelds AI, et al. Urinary tract infections in general practice patients: diagnostic tests versus bacteriological culture. J Antimicrob Chemother 2006 May; 57(5): 955–8

    PubMed  CAS  Google Scholar 

  18. McIsaac WJ, Low DE, Biringer A, et al. The impact of empirical management of acute cystitis on unnecessary antibiotic use. Arch Int Med 2002 Mar 10; 162(5): 600–5

    Google Scholar 

  19. Bent S, Nallamothu BK, Simel DL, et al. Does this woman have an acute uncomplicated urinary tract infection? JAMA 2002 May; 287(20): 2701–10

    Google Scholar 

  20. Batchelor BI, Crook DW, Jones T, et al. Impact of guidelines for the diagnosis of urinary tract infection on trimethoprim susceptibility of Escherichia coli. J Antimicrob Chemother 2002 Jan; 49(1): 223–4

    PubMed  CAS  Google Scholar 

  21. Gupta K, Scholes D, Stamm WE. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA 1999 Feb 24; 281(8): 736–8

    PubMed  CAS  Google Scholar 

  22. Karlowsky JA, Kelly LJ, Thornsberry C, et al. Susceptibility to fluoroquinolones among commonly isolated gram-negative bacilli in 2000; TRUST and TSN data for the United States. Int J Antimicrob Agents 2002; 19: 21–31

    PubMed  CAS  Google Scholar 

  23. Gupta K, Sahm DF, Mayfield D, et al. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nationwide analysis. Clin Infect Dis 2001 Jul 1; 33(1): 89–94

    PubMed  CAS  Google Scholar 

  24. Karlowsky JA, Hoban DJ, Decorby MR, et al. Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance study. Antimicrob Agents Chemother 2006 Jun; 50(6): 2251–4

    PubMed  CAS  Google Scholar 

  25. Kiffer CR, Mendes C, Oplustil CP, et al. Antibiotic resistance and trend of urinary pathogens in general outpatients from a major urban city. Int Braz J Urol 2007 Jan–Feb; 33(1): 42–49

    PubMed  Google Scholar 

  26. Goldstein FW. Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections in France. Eur J Clin Microbiol Infect Dis 2000; 19: 112–7

    PubMed  CAS  Google Scholar 

  27. Hummers-Pradier EVA, Koch M, Ohse AM, et al. Antibiotic resistance of urinary pathogens in female general practice patients. Scand J Infect Dis 2005; 37(4): 256–61

    PubMed  CAS  Google Scholar 

  28. Ungheri D, Albini E, Belluco G. In-vitro susceptibility of quinolone-resistant clinical isolates of Escherichia coli to fosfomycin trometamol. J Chemother 2002 Jun; 14(3): 237–40

    PubMed  CAS  Google Scholar 

  29. Marchese A, Gualco L, Debbia EA, et al. In vitro activity of fosfomycin against gram-negative urinary pathogens and the biological cost of fosfomycin resistance. Int J Antimicrob Agents 2003 Oct; 22 Suppl. 2: 53–9

    PubMed  Google Scholar 

  30. Tempera G, Mirabile M, Mangiafico A, et al. Fosfomycin trimethamine in uncomplicated urinary tract infections: an epidemiological survey. J Chemother 2004 Apr; 16(2): 216–7

    PubMed  CAS  Google Scholar 

  31. Gesu GP, Marchetti F. Increasing resistance according to patient’s age and sex in Escherichia coli isolated from urine in Italy. J Chemother 2007 Apr; 19(2): 161–5

    PubMed  CAS  Google Scholar 

  32. Sociedad Espanola de Enfermedades Infecciosas y Microbiologia Clinica (SEMIC). Protocolos clinicos 2003: infeccion urinaria [online]. Available from URL: http://www.semic.org/protocolos/clinicos/index.htm [Accessed 2007 Nov 12]

  33. Hryniewicz K, Szczypa K, Sulikowska A, et al. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother 2001 Jun; 47(6): 773–80

    PubMed  CAS  Google Scholar 

  34. Zemkova M, Kotlarova J, Merka V, et al. Emergence of fluoroquinolone resistance in Escherichia coli isolates at the department of clinical hematology. New Microbiol 2007 Oct; 30(4): 423–30

    PubMed  CAS  Google Scholar 

  35. Gobernado M, Valdes L, Alos JI, et al. Quinolone resistance in female outpatient urinary tract isolates of Escherichia coli: age-related differences. Rev Esp Quimio 2007; 20: 206–10

    CAS  Google Scholar 

  36. Gobernado M, Valdes L, Alos JI, et al. Antimicrobial susceptibility of clinical Escherichia coli isolates from uncomplicated cystitis in women over a 1-year period in Spain. Rev Esp Quimio 2007; 20: 68–76

    CAS  Google Scholar 

  37. Garcia MI, Munoz Bellido JL, Garcia Rodriguez JA, et al. In vitro susceptibility of community-acquired urinary tract pathogens to commonly used antimicrobial agents in Spain: a comparative multicenter study (2002–2004). J Chemother 2007 Jun; 19(3): 263–70

    Google Scholar 

  38. Storby KA, Osterlund A, Kahlmeter G. Antimicrobial resistance in Escherichia coli in urine samples from children and adults: a 12 year analysis. Act Paed 2004 Apr; 93(4): 487–91

    Google Scholar 

  39. Arslan H, Azap OK, Ergonul O, et al. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother 2005 Nov; 56(5): 914–8

    PubMed  CAS  Google Scholar 

  40. Rock W, Colodner R, Chazan B, et al. Ten years surveillance of antimicrobial susceptibility of community-acquired Escherichia coli and other uropathogens in Northern Israel (1995–2005). Isr Med Assoc J 2007 Nov; 9: 803–5

    PubMed  Google Scholar 

  41. Hima-Lerible H, Menard D, Talarmin A. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Bangui, Central African Republic. J Antimicrob Chemother 2003 Jan; 51(1): 192–4

    PubMed  CAS  Google Scholar 

  42. Randrianirina F, Soares JL, Carod JF, et al. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Antananarivo, Madagascar. J Antimicrob Chemother 2007 Feb; 59(2): 309–12

    PubMed  CAS  Google Scholar 

  43. Issack MI, Yee Kin Tet HY, Morlat P. Antimicrobial resistance among enterobacteriaceae causing uncomplicated urinary tract infections in Mauritius: consequences of past misuse of antibiotics. J Chemother 2007 Apr; 19(2): 222–5

    PubMed  CAS  Google Scholar 

  44. Nabeth P, Perrier-Gros-Claude J-D, Juergens-Behr A, et al. In vitro susceptibility of quinolone-resistant Enterobacteriaceae uropathogens to fosfomycin trometamol, in Dakar, Senegal. Scand J Infect Dis 2005; 37(6–7): 497–9

    PubMed  CAS  Google Scholar 

  45. Dromigny JA, Nabeth P, Juergens-Behr A, et al. Risk factors for antibiotic-resistant Escherichia coli isolated from community-acquired urinary tract infections in Dakar, Senegal. J Antimicrob Chemother 2005 Jul; 56(1): 236–9

    PubMed  CAS  Google Scholar 

  46. Ahmed AA, Osman H, Mansour AM, et al. Antimicrobial agent resistance in bacterial isolates from patients with diarrhea and urinary tract infection in the Sudan. Am J Trop Med Hyg 2000; 63: 259–63

    PubMed  CAS  Google Scholar 

  47. Akram M, Shahid M, Khan AU. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Ann Clin Microbiol Antimicrob 2007; 6: 4

    PubMed  Google Scholar 

  48. Arya SC, Agarwal N. Re: antibiotic resistance and trend of urinary pathogens in general outpatients from a major urban city. Int Braz J Urol 2007; 33: 267–9

    PubMed  Google Scholar 

  49. Kahlmeter G. An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO.SENS Project. J Antimicrob Chemother 2003 Jan; 51(1): 69–76

    PubMed  CAS  Google Scholar 

  50. Urbanek K, Kolar M, Strojil J, et al. Utilization of fluoroquinolones and Escherichia coli resistance in urinary tract infection: inpatients and outpatients. Pharmacoepidemiol Drug Saf 2005 Oct; 14(10): 741–5

    PubMed  Google Scholar 

  51. Brown PD, Freeman A, Foxman B. Prevalence and predictors of trimethoprim/sulphamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan. Clin Infect Dis 2002 Apr 15; 34(8): 1061–6

    PubMed  CAS  Google Scholar 

  52. Wright SW, Wrenn KD, Haynes ML. Trimethoprim-sulfamethoxazole resistance among urinary coliform isolates. J Gen Intern Med 1999; 14: 606–9

    PubMed  CAS  Google Scholar 

  53. McNulty CAM, Richards J, Livermore DM, et al. Clinical relevance of laboratory-reported antibiotic resistance in acute uncomplicated urinary tract infection in primary care. J Antimicrob Chemother 2006 Nov; 58(5): 1000–8

    PubMed  CAS  Google Scholar 

  54. Hillier S, Roberts Z, Dunstan F, et al. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case-control study. J Antimicrob Chemother 2007 Jul; 60(1): 92–9

    PubMed  CAS  Google Scholar 

  55. Gupta K, Stamm WE. Outcomes associated with trimethoprim/sulphamethoxazole (TMP/SMX) therapy in TMP/SMX resistant community-acquired UTI. Int J Antimicrob Agents 2002 Jun; 19(6): 554–6

    PubMed  CAS  Google Scholar 

  56. Metlay JP, Strom BL, Asch DA. Prior antimicrobial drug exposure: a risk factor for trimethoprim-sulfamethoxazole-resistant urinary tract infections. J Antimicrob Chemother 2003 Apr; 51(4): 963–70

    PubMed  CAS  Google Scholar 

  57. Kahan NR, Chinitz DP, Waitman DA, et al. Empiric treatment of uncomplicated urinary tract infection with fluoroquinolones in older women in Israel: another lost treatment option? Ann Pharmacother 2006 Dec; 40(12): 2223–7

    PubMed  CAS  Google Scholar 

  58. Blahna MT, Zalewski CA, Reuer J, et al. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother 2006 Apr; 57(4): 666–72

    PubMed  CAS  Google Scholar 

  59. Wright SW, Wrenn KD, Haynes M, et al. Prevalence and risk factors for multidrug resistant uropathogens in ED patients. Am J Emerg Med 2000 Mar; 18(2): 143–6

    PubMed  CAS  Google Scholar 

  60. Mentler PA, Kuhn BR, Gandhi G. Risk stratification for trimethoprim-sulfamethoxazole resistance in community-acquired, uncomplicated urinary tract infections. Am J Health-Syst Pharm 2006 Sep 1; 63(17): 1588–90

    PubMed  Google Scholar 

  61. Colodner R, Rock W, Chazan B, et al. Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients. Eur J Clin Microbiol Infect Dis 2004 Mar; 23(3): 163–7

    PubMed  CAS  Google Scholar 

  62. Marijan T, Vranes J, Bedeni B, et al. Emergence of uropathogenic extended-spectrum beta lactamases-producing Escherichia coli strains in the community. Coll Antropol 2007; 31: 227–33

    PubMed  Google Scholar 

  63. Goettsch WG, Janknegt R, Herings RM. Increased treatment failure after 3-day courses of nitrofurantoin and trimethoprim for urinary tract infections in women: a population-based retrospective cohort study using the PHARMO database. Br J Clin Pharmacol 2004 Aug; 58(2): 184–9

    PubMed  Google Scholar 

  64. Butler CC, Hillier S, Roberts Z, et al. Antibiotic-resistant infections in primary care are symptomatic for longer and increase workload: outcomes for patients with E. coli UTIs. Br J Gen Prac 2006 Sep; 56(530): 686–92

    Google Scholar 

  65. Lawrenson RA, Logie JW. Antibiotic failure in the treatment of urinary tract infections in young women. J Antimicrob Chemother 2001 Dec; 48(6): 895–901

    PubMed  CAS  Google Scholar 

  66. Gupta K. Emerging antibiotic resistance in urinary tract pathogens. Infect Dis Clin North Am 2003 Jun; 17(2): 243–59

    PubMed  Google Scholar 

  67. Gross PA, Patel B. Reducing antibiotic overuse: a call for a national performance measure for not treating asymptomatic bacteriuria. Clin Infect Dis 2007 Nov 15; 45(10): 1335–7

    PubMed  Google Scholar 

  68. Hillier S, Bell J, Heginbothom M, et al. When do general practitioners request urine specimens for microbiology analysis? The applicability of antibiotic resistance surveillance based on routinely collected data. J Antimicrob Chemother 2006 Dec; 58(6): 1303–6

    PubMed  CAS  Google Scholar 

  69. Galatti L, Sessa A, Mazzaglia G, et al. Antibiotic prescribing for acute and recurrent cystitis in primary care: a 4 year descriptive study. J Antimicrob Chemother 2006 Mar; 57(3): 551–6

    PubMed  CAS  Google Scholar 

  70. Huang ES, Stafford RS. National patterns in the treatment of urinary tract infections in women by ambulatory care physicians. Arch Int Med 2002 Jan 14; 162(1): 41–7

    Google Scholar 

  71. Kallen AJ, Welch HG, Sirovich BE. Current antibiotic therapy for isolated urinary tract infections in women. Arch Int Med 2006 Mar 27; 166(6): 635–9

    Google Scholar 

  72. Wigton RS, Longenecker JC, Bryan TJ, et al. Variation by specialty in the treatment of urinary tract infection in women. J Gen Int Med 1999 Aug; 14(8): 491–4

    CAS  Google Scholar 

  73. Lautenbach E, Larosa LA, Kasbekar N, et al. Fluoroquinolone utilization in the emergency departments of academic medical centers: prevalence of, and risk factors for, inappropriate use. Arch Int Med 2003 Mar 10; 163(5): 601–5

    Google Scholar 

  74. Iravani A, Tice AD, McCarty J, et al. Short-course ciprofloxacin treatment of acute uncomplicated urinary tract infection in women: the minimum effective dose. Arch Intern Med 1995 Mar 13; 155(5): 485–94

    PubMed  CAS  Google Scholar 

  75. Vogel T, Verreault R, Gourdeau M, et al. Optimal duration of antibiotic therapy for uncomplicated urinary tract infection in older women: a double-blind randomized controlled trial. CMAJ 2004 Feb 17; 170(4): 469–73

    PubMed  Google Scholar 

  76. Arredondo-Garcia JL, Figueroa-Damian R, Rosas A, et al. Comparison of short-term treatment regimen of ciprofloxacin versus long-term treatment regimens of trimethoprim/sulfamethoxazole or norfloxacin for uncomplicated lower urinary tract infections: a randomized, multicentre, open-label, prospective study. J Antimicrob Chemother 2004 Oct; 54(4): 840–3

    PubMed  CAS  Google Scholar 

  77. Hooten TM, Scholes D, Gupta K, et al. Amoxicillin-clavulanate vs ciprofloxacin for the treatment of uncomplicated cystitis in women. a randomized trial. JAMA 2005 Feb 23; 293(8): 949–55

    Google Scholar 

  78. Richard GA, Mathew CP, Kirstein JM, et al. Single-dose fluoroquinolone therapy of acute uncomplicated urinary tract infection in women: results from a randomized, double-blind, multicenter trial comparing single-dose to 3-day fluoroquinolone regimens. Urology 2002 Mar; 59(3): 334–9

    PubMed  Google Scholar 

  79. Iravani A, Klimberg I, Briefer C, et al. A trial comparing low-dose, short-course ciprofloxacin and standard 7 day therapy with co-trimoxazole or nitroflurantoin in the treatment of uncomplicated urinary tract infections. J Antimicrob Chemother 1999; 43 Suppl. A: 67–75

    PubMed  CAS  Google Scholar 

  80. McCarty JM, Richard G, Huck W, et al. A randomized trial of short-course ciprofloxacin, ofloxacin, or trimethoprim/sulfamethoxazole for the treatment of acute urinary tract infection in women. Am J Med 1999 Mar; 106(3): 292–9

    PubMed  CAS  Google Scholar 

  81. Schaeffer AJ, Stuppy BA. Efficacy and safety of self-start therapy in women with recurrent urinary tract infections. J Urol 1999 Jan; 161(1): 207–11

    PubMed  CAS  Google Scholar 

  82. Henry Jr DC, Bettis RB, Riffer E, et al. Comparison of once-daily extended-release ciprofloxacin and conventional twice-daily ciprofloxacin for the treatment of uncomplicated urinary tract infection in women. Clin Ther 2002 Dec; 24(12): 2088–104

    PubMed  CAS  Google Scholar 

  83. Fourcroy JL, Berner B, Chiang YK, et al. Efficacy and safety of a novel once-daily extended-release ciprofloxacin tablet formulation for treatment of uncomplicated urinary tract infection in women. Antimicrob Agents Chemother 2005 Oct; 49(10): 4137–43

    PubMed  CAS  Google Scholar 

  84. Bonfiglio G, Mattina R, Lanzafame A, et al. Fosfomycin tromethamine in uncomplicated urinary tract infections: a clinical study. Chemotherapy 2005 May; 51(2–3): 162–6

    PubMed  CAS  Google Scholar 

  85. Lobel B. Short term therapy for uncomplicated urinary tract infection today: clinical outcome upholds the theories. Int J Antimicrob Agents 2003 Oct; 22 Suppl. 2: 85–7

    PubMed  Google Scholar 

  86. Gupta K, Hooton TM, Stamm WE. Isolation of fluoroquinolone-resistant rectal Escherichia coli after treatment of acute uncomplicated cystitis. J Antimicrob Chemother 2005 Jul; 56(1): 243–6

    PubMed  CAS  Google Scholar 

  87. Stein GE. Comparison of single-dose fosfomycin and a 7-day course of nitrofurantoin in female patients with uncomplicated urinary tract infection. Clin Ther 1999; 21: 1864–72

    PubMed  CAS  Google Scholar 

  88. Minassian MA, Lewis DA, Chattopadhyay D, et al. A comparison between single-dose fosfomycin trametamol (Monuril®) and a 5-day course of trimethoprim in the treatment of uncomplicated lower urinary tract infection. Int J Antimicrob Agents 1998; 10: 39–47

    PubMed  CAS  Google Scholar 

  89. Raz R, Chazan B, Kennes Y, et al. Empirical use of trimethoprim/sulphamethoxazole (TMP-SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP-SMX-resistant uropathogens. Clin Infect Dis 2002 May 1; 34(9): 1165–9

    PubMed  CAS  Google Scholar 

  90. Christiaens TC, DeMeyere M, Verschraegen G, et al. Randomised controlled trial of nitrofurantoin versus placebo in the treatment of uncomplicated urinary tract infection in adult women. Br J Gen Prac 2002 Sep; 52(482): 729–34

    CAS  Google Scholar 

  91. Nicolle LE, Madsen KS, Debeeck GO, et al. Three days of pivmecillinam or norfloxacin for treatment of acute uncomplicated urinary infection in women. Scand J Infect Dis 2002; 34(7): 487–92

    PubMed  CAS  Google Scholar 

  92. Hooton TM, Winter C, Tiu F, et al. Randomized comparative trial and cost analysis of 3-day antimicrobial regimens for treatment of acute cystitis in women. JAMA 1995 Jan 4; 273(1): 41–5

    PubMed  CAS  Google Scholar 

  93. Masterton RG, Bochsler JA. High-dose co-amoxiclav in a single dose versus 7 days of co-trimoxazole as treatment of uncomplicated lower urinary tract infection in women. J Antimicrob Chemother 1995 Jan; 35(1): 129–37

    PubMed  CAS  Google Scholar 

  94. Leigh AP, Nemeth MA, Keyserling CH, et al. Cefdinir versus cefaclor in the treatment of uncomplicated urinary tract infection. Clin Ther 2000; 22: 818–25

    PubMed  CAS  Google Scholar 

  95. Nicolle LE, Hoepelman AIM, Floor M, et al. Comparison of three days’ therapy with cefcanel or amoxicillin for the treatment of acute uncomplicated urinary tract infection. Scand J Infect Dis 1993; 25(5): 631–7

    PubMed  CAS  Google Scholar 

  96. Gupta K, Hooten TM, Roberts PL, et al. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch Intern Med 2007 Nov 12; 167(20): 2207–12

    PubMed  CAS  Google Scholar 

  97. O’Connor KA, Kingston M, Twomey C, et al. A trial comparing standard trimethoprim therapy with nitrofurantoin in the treatment of uncomplicated urinary tract infections in elderly patients [abstract]. Age Ageing 2002 Feb; 31 Suppl. 1: 13

    Google Scholar 

  98. Talan DA, Stamm WE, Hooten TM, et al. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis in women. a randomized trial. JAMA 2000 Mar 22/29; 283(12): 1583–90

    PubMed  CAS  Google Scholar 

  99. Rubin RH, Shapiro ED, Andriole VT, et al. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Clin Infect Dis 1992 Nov; 15 Suppl. 1: S216–27

    PubMed  Google Scholar 

  100. DeAlleaume L, Tweed EM. When are empiric antibiotics appropriate for urinary tract infection symptoms? J Fam Prac 2006 Apr; 55(4): 338, 341–2

    Google Scholar 

  101. Kahan NR, Friedman NL, Lomnicky Y, et al. Physician speciality and adherence to guidelines for the treatment of unsubstantiated uncomplicated urinary tract infection among women. Pharmacoepidemiol Drug Saf 2005 May; 14(5): 357–61

    PubMed  Google Scholar 

  102. Barry HC, Ebell MH, Hickner J. Evaluation of suspected urinary tract infection in ambulatory women: a cost-utility analysis of office-based strategies. J Fam Prac 1997; 44: 49–60

    CAS  Google Scholar 

  103. Richards D, Toop L, Chambers S, et al. Response to antibiotics of women with symptoms of urinary tract infection but negative dipstick urine test results: a double-blind randomized controlled trial. BMJ 2005 Jul 16; 331(7509): 143

    PubMed  Google Scholar 

  104. Ejrnaes K, Sandvang D, Lundgren B, et al. Pulsed-field gel electrophoresis typing of Escherichia coli strains from samples collected before and after pivmecillinam or placebo treatment of uncomplicated community-acquired urinary tract infection in women. J Clin Microbiol 2006 May; 44(5): 1776–81

    PubMed  CAS  Google Scholar 

  105. Rosen DA, Hooten TM, Stamm WE, et al. Detection of intra-cellular bacterial communities in human urinary tract infections. PLOS Med 2007 Dec; 4(12): 1949–58

    Google Scholar 

  106. Ottiger C, Schaer G, Huber AR. Time-course of quantitative urinary leukocytes and bacteria counts during antibiotic therapy in women with symptoms of urinary tract infection. Clin Chim Acta 2007 Apr; 379(1–2): 36–41

    PubMed  CAS  Google Scholar 

  107. Vinson DR, Quesenberry Jr CP. The safety of telephone management of presumed cystitis in women. Arch Intern Med 2004 May 10; 164(9): 1026–9

    PubMed  Google Scholar 

  108. Barry HC, Hickner J, Ebell MH, et al. A randomized controlled trial of telephone management of suspected urinary tract infections in women. J Fam Prac 2001 Jul; 50(7): 589–94

    CAS  Google Scholar 

  109. Saint S, Scholes D, Fihn SD, et al. The effectiveness of a clinical practice guideline for the management of presumed uncomplicated urinary tract infection in women. Am J Med 1999 Jun; 106(6): 636–41

    PubMed  CAS  Google Scholar 

  110. Aagaard EM, Nadler P, Adler J, et al. An interactive computer kiosk module for the treatment of recurrent uncomplicated cystitis in women. J Gen Int Med 2006 Nov; 21(11): 1156–9

    Google Scholar 

  111. Schauberger CW, Merkitch KW, Prell AM. Acute cystitis in women: experience with a telephone-based algorithm. Wisc Med J 2007; 106(6): 326–9

    Google Scholar 

  112. McIsaac WJ, Moineddin R, Ross S. Validation of a decision aid to assist physicians in reducing unnecessary antibiotic drug use for acute cystitis. Arch Intern Med 2007 Nov 12; 167(20): 2201–6

    PubMed  Google Scholar 

  113. Gupta K, Hooten TM, Roberts PL, et al. Patient-initiated treatment of uncomplicated recurrent urinary tract infections in young women. Ann Intern Med 2001 Jul 3; 135(1): 9–16

    PubMed  CAS  Google Scholar 

  114. Lee BB, Simpson JM, Craig JC, et al. Methenamine hippurate for preventing urinary tract infections. Cochrane Database Syst Rev 2007; (4): CD003265

  115. Albert X, Huertas I, Pereiro II, et al. Antibiotics for preventing recurrent urinary tract infections in non-pregnant women. Cochrane Database Syst Rev 2004; (3): CD001209

  116. Alexiou Z, Mouktaroudi M, Koratzanis G, et al. The significance of compliance for the success of antimicrobial prophylaxis in recurrent lower urinary tract infections: the Greek experience. Int J Antimicrob Ag 2007; 30: 40–3

    CAS  Google Scholar 

  117. Bauer HW, Alloussi S, Egger C, et al. A long-term, multicenter, double-blind study of an Escherichia coli extract (OM-89) in female patients with recurrent urinary tract infections. Eur Urol 2005; 47: 542–8

    PubMed  Google Scholar 

  118. Darouiche RO, Thornby JI, Cerra-Stewart C, et al. Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial. Clin Infect Dis 2005 Nov 15; 41(10): 1531–4

    PubMed  Google Scholar 

  119. Barrons R, Tassone D. Use of Lactobacillus probiotics for bacterial genitourinary infections in women: a review. Clin Ther 2008 Mar; 30(3): 453–68

    PubMed  CAS  Google Scholar 

  120. Reid G, Bruce AW. Probiotics to prevent urinary tract infections: the rationale and evidence. World J Urol 2006; 24: 28–32

    PubMed  Google Scholar 

  121. McCully KS, Jackson S. Hormone replacement therapy and the bladder. J Br Menopause Soc 2004 Mar; 10(1): 30–2

    PubMed  Google Scholar 

  122. Rozenberg S, Pastijn A, Gevers R, et al. Estrogen therapy in older patients with recurrent urinary tract infections: a review. Int J Fertil Womens Med 2004 Mar–Apr; 49(2): 71–74

    PubMed  CAS  Google Scholar 

  123. Andre M, Molstad S, Lundborg GS, et al. Management of urinary tract infections in primary care: a repeated 1-week diagnosis-prescribing study in five counties in Sweden in 2000 and 2002. Scand J Infect Dis 2004; 36(2): 134–8

    PubMed  Google Scholar 

  124. Martinez MA, Inglada L, Ochoa C, et al. Assessment of antibiotic prescription in acute urinary tract infections in adults. J Infect 2007; 54: 235–44

    PubMed  Google Scholar 

  125. Warren JW, Abrutyn E, Hebel JR, et al. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis. Clin Infect Dis 1999 Oct; 29(4): 745–58

    PubMed  CAS  Google Scholar 

  126. Kahan E, Kahan NR, Chinitz DP. Urinary tract infection in women. Physician’s preferences for treatment and adherence to guidelines: a national drug utilization study in a managed care setting. Eur J Clin Pharmacol 2003 Nov; 59(8–9): 663–8

    PubMed  Google Scholar 

  127. Grover ML, Bracamonte JD, Kanodia AK, et al. Assessing adherence to evidence-based guidelines for the diagnosis and management of uncomplicated urinary tract infection. Mayo Clin Proc 2007 Feb; 82(2): 181–5

    PubMed  Google Scholar 

  128. O’Connor PJ, Solberg LI, Christianson J, et al. Mechanism of action and impact of a cystitis clinical practice guideline on outcomes and costs of care in an HMO. Jt Comm J Qual Improv 1996; 22: 673–82

    PubMed  Google Scholar 

  129. Taur Y, Smith MA. Adherence to the Infectious Diseases Society of America guidelines in the treatment of uncomplicated urinary tract infection. Clin Infect Dis 2007 Mar 15; 44(6): 769–74

    PubMed  Google Scholar 

  130. Kahan NR, Chinitz DP, Waitman DA, et al. Empiric treatment of uncomplicated UTI in women: wasting money when more is not better. J Clin Pharm Ther 2004 Oct; 29(5): 437–41

    PubMed  CAS  Google Scholar 

  131. Kahan NR, Chinitz DP, Kahan E. Longer than recommended empiric antibiotic treatment of urinary tract infection in women: an avoidable waste of money. J Clin Pharm Ther 2004 Feb; 29(1): 59–63

    PubMed  CAS  Google Scholar 

  132. Kahan NR, Chinitz DP, Kahan E. Physician adherence to recommendations for duration of empiric antibiotic treatment for uncomplicated urinary tract infection in women: a national drug utilization analysis. Pharmacoepidemiol Drug Saf 2004 Apr; 13(4): 239–42

    PubMed  Google Scholar 

  133. Le TP, Miller LG. Empirical therapy for uncomplicated urinary tract infections in an era of increasing antimicrobial resistance: a decision and cost analysis. Clin Infect Dis 2001 Sep 1; 33(5): 615–21

    PubMed  CAS  Google Scholar 

  134. Berger RE. Duration of antibacterial treatment for uncomplicated urinary tract infection in women. J Urology 2006 Mar; 175(3): 968

    Google Scholar 

  135. Nickel JC. Management of urinary tract infections: historical perspective and current strategies: part 2, modern management. J Urology 2005 Jan; 173(1): 27–32

    CAS  Google Scholar 

  136. Gentry LO. Cephalosporins in urinary tract infection. Drugs 1987; 34 Suppl. 2: 154–63

    PubMed  Google Scholar 

  137. Miller LG, Mehrotra R, Tang AW. Does in vitro fluoroquinolone resistance predict clinical failure in urinary tract infections? Int J Antimicrob Agents 2007; 29: 605–7

    PubMed  CAS  Google Scholar 

  138. Stamey TA, Fair WR, Timothy MM, et al. Serum versus urinary antimicrobial concentrations in the cure of urinary-tract infections N Engl J Med 1974 Nov 28; 291(22): 1159–1163

    CAS  Google Scholar 

  139. Kaiser J, McPherson V, Kaufmann L. Which UTI therapies are safe and effective during breastfeeding? J Fam Prac 2007 Mar; 56(3): 225–6, 228

    Google Scholar 

  140. Johnson JR, Owens K, Gajewski A, et al. Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J Infect Dis 2008 Jan 15; 197(2): 218–24

    PubMed  Google Scholar 

  141. Ong CL, Ulett GC, Mabbett AN, et al. Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 2008 Feb; 190(3): 1054–63

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. P. Guay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guay, D.R.P. Contemporary Management of Uncomplicated Urinary Tract Infections. Drugs 68, 1169–1205 (2008). https://doi.org/10.2165/00003495-200868090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200868090-00002

Keywords

Navigation