Skip to main content
Log in

Ethnic or Racial Differences Revisited

Impact of Dosage Regimen and Dosage Form on Pharmacokinetics and Pharmacodynamics

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Ethnic or racial differences in pharmacokinetics and pharmacodynamics have been attributed to the distinctions in the genetic, physiological and pathological factors between ethnic/racial groups. These pharmacokinetic/pharmacodynamic differences are also known to be influenced by several extrinsic factors such as socioeconomic background, culture, diet and environment. However, it is noted that other factors related to dosage regimen and dosage form have largely been ignored or overlooked when conducting or analysing pharmacokinetic/pharmacodynamic studies in relation to ethnicity/race. Potential interactions can arise between the characteristics of ethnicity/race and a unique feature of dosage regimen or dosage form used in the study, which may partly account for the observed pharmacokinetic/pharmacodynamic differences between ethnic/racial groups.

Ethnic/racial differences in pharmacokinetics/pharmacodynamics can occur from drug administration through a specific route that imparts distinct pattern of absorption, distribution, transport, metabolism or excretion. For example, racial differences in the first-pass metabolism of a drug following oral administration may not be relevant when the drug is applied to the skin. On the other hand, ethnic/racial difference in pharmacokinetics/pharmacodynamics can also happen via two different routes of drug delivery, with varying levels of dissimilarity between routes. For example, greater ethnic/racial differences were observed in oral clearance than in systemic clearance of some drugs, which might be explained by the pre-systemic factors involved in the oral administration as opposed to the intravenous administration. Similarly, changes in the dose frequency and/or duration may have profound impact on the ethnic/racial differences in pharmacokinetic/pharmacodynamic outcome. Saturation of enzymes, transporters or receptors at high drug concentrations is a possible reason for many observed ethnic/racial discrepancies between single- and multiple-dose regimens, or between low- and high-dose administrations. The presence of genetic polymorphism of enzymes and/or transporters can further complicate the analysis of pharmacokinetic/pharmacodynamic data in ethnic/racial populations. Even within the same dosage regimen, the use of different dosage forms may trigger significantly different pharmacokinetic/pharmacodynamic responses in various ethnic/racial groups, given that different dosage forms may exhibit different rates of drug release, may release the drug at different sites, and/or have different retention times at specific sites of the body. It is thus cautioned that the pharmacokinetic/pharmacodynamic data obtained from different ethnic/racial groups cannot be indiscriminately compared or combined for analysis if there is a lack of homogeneity in the apparent ‘extrinsic’ factors, including dosage regimen and dosage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood AJJ, Zhou HH. Ethnic differences in drug disposition and responsiveness. Clin Pharmacokinet 1991; 20: 350–73

    Article  PubMed  CAS  Google Scholar 

  2. Kitler ME. Clinical trials and transethnic pharmacology. Drug Saf 1994; 11: 378–91

    Article  PubMed  CAS  Google Scholar 

  3. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation: current state knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192–209

    Article  PubMed  CAS  Google Scholar 

  4. Johnson JA. Influence of race or ethnicity on pharmacokinetics of drugs. J Pharm Sci 1997; 86: 1328–33

    Article  PubMed  CAS  Google Scholar 

  5. Johnson JA. Predictability of the effects of race or ethnicity on pharmacokinetics of drugs. Int J Clin Pharmacol Ther 2000; 38: 53–60

    PubMed  CAS  Google Scholar 

  6. Poolsup N, Po A, Knight TL. Pharmacogenetics and psychopharmacotherapy. Int J Clin Pharmacol Ther 2000; 25: 197–220

    Article  CAS  Google Scholar 

  7. Deierhoi MH, Haug III M. Review of select transplant subpopulations at high risk of failure from standard immunosuppressive therapy. Clin Transplant 2000; 14: 439–48

    Article  PubMed  CAS  Google Scholar 

  8. Xie H, Kim RB, Wood AJJ, et al. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41: 815–50

    Article  PubMed  CAS  Google Scholar 

  9. Lin KM. Biological differences in depression and anxiety across races and ethnic groups. J Clin Psychiatry 2001; 62 Suppl. 13: 13–9

    PubMed  Google Scholar 

  10. Desta Z, Zhou X, Shin J, et al. Clinical significance of the Cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41: 913–58

    Article  PubMed  CAS  Google Scholar 

  11. Bjornsson TD, Wagner JA, Donahue SR, et al. A review and assessment of potential sources of ethnic difference in drug responsiveness. J Clin Pharmacol 2003; 43: 943–67

    Article  PubMed  CAS  Google Scholar 

  12. Schaefer BM, Caracciolo V, Frishman WH, et al. Gender, ethnicity and genetics in cardiovascular disease. Part 1: basic principles. Heart Dis 2003; 5: 129–43

    Article  PubMed  CAS  Google Scholar 

  13. Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 2004; 44: 1083–105

    Article  PubMed  CAS  Google Scholar 

  14. Dirks NL, Huth B, Yates CR, et al. Pharmacokinetics of immunosuppressants: a perspective on ethnic differences. Int J Clin Pharmacol Ther 2004; 42: 701–18

    PubMed  CAS  Google Scholar 

  15. Anderson GD. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health 2005; 14: 19–29

    Article  Google Scholar 

  16. Donovan MD. Sex and racial differences in pharmacological response: effect of route of administration and drug delivery system on pharmacokinetics. J Womens Health 2005; 14: 30–7

    Article  Google Scholar 

  17. Chowbay B, Zhou S, Lee EJD. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev 2005; 37: 327–78

    PubMed  CAS  Google Scholar 

  18. International Conference on Harmonization Steering Committee. Guidance on ethnic factors in the acceptability of foreign clinical data. Fed Regist 1998; 63: 31790–6

    Google Scholar 

  19. Berardesca E, Maibach H. Racial differences in skin pathophysiology. J Am Acad Dermatol 1996; 34: 667–72

    Article  PubMed  CAS  Google Scholar 

  20. Kompaore F, Marty JP, Dupont C. In vivo evaluation of the stratum corneum barrier in blacks, Caucasians and Asians with two noninvasive methods. Skin Pharmacol 1993; 6: 200–7

    Article  PubMed  CAS  Google Scholar 

  21. Lin KM, Lau JK, Smith R, et al. Comparison of alprazolam plasma levels in normal Asians and Caucasian male volunteers. Psychopharmacology (Berl) 1988; 96: 365–9

    Article  CAS  Google Scholar 

  22. Lin KM, Poland RE, Lau JK, et al. Haloperidol and prolactin concentrations in Asians and Caucasians. J Clin Psychopharmacol 1988; 8: 195–201

    Article  PubMed  CAS  Google Scholar 

  23. Sowinski KM, Lima JJ, Burlew BS, et al. Racial differences in propranolol enantiomer kinetics following simultaneous i.v. and oral administration. Br J Clin Pharmacol 1996; 42: 339–46

    Article  PubMed  CAS  Google Scholar 

  24. Johnson JA, Herring VL, Wolfe MS, et al. CYP1A2 and CYP2D6 4-hydroxylate propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther 2000; 294: 1099–105

    PubMed  CAS  Google Scholar 

  25. Clegg LX, Li FP, Hankey BF, et al. Cancer survival among US whites and minorities: a SEER (Surveillance, Epidemiology, and End Results) program population-based study. Arch Intern Med 2002; 162: 1985–93

    Article  PubMed  Google Scholar 

  26. Joslyn SA, West MM. Racial differences in breast carcinoma survival. Cancer 2000; 88: 114–23

    Article  PubMed  CAS  Google Scholar 

  27. Hershman D, Weinberg M, Rosner Z, et al. Ethnic neutropenia delay in African American women undergoing chemotherapy for early-stage breast cancer. J Natl Cancer Inst 2003; 95: 1545–8

    Article  PubMed  Google Scholar 

  28. Bunke M, Sloan R, Brier M, et al. An improved glomerular filtration rate in cardiac transplant recipients with once-a-day cyclosporine dosing. Transplant 1995; 59: 537–40

    CAS  Google Scholar 

  29. Tarantino A, Passerini P, Campise M, et al. Is cyclosporine in renal-transplant recipients more effective when given twice a day than in a single daily dose? Clin Transplant 2004; 78: 675–80

    CAS  Google Scholar 

  30. Siddoway LA, Thompson KA, McAllister B, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987; 75: 785–91

    Article  PubMed  CAS  Google Scholar 

  31. Brosen K. Recent development in hepatic drug oxidation: implications for clinical pharmacokinetics. Clin Pharmacokinet 1990; 18: 220–39

    Article  PubMed  CAS  Google Scholar 

  32. Andersson T, Cederberg C, Heggelund A, et al. The pharmacokinetics of single and repeated once-daily dose of 10, 20 and 40mg omeprazole as enteric-coated granules. Drug Invest 1991; 3: 45–52

    Article  Google Scholar 

  33. Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87

    Article  PubMed  CAS  Google Scholar 

  34. Funck-Brentano C, Becquemont L, Kroemer HK, et al. Variable disposition kinetics and electrocardiographic effects of flecainide during repeated dosing in humans: contribution of genetic factors, dose-dependent clearance, and interaction with amiodarone. Clin Pharmacol Ther 1994; 55: 256–69

    Article  PubMed  CAS  Google Scholar 

  35. Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (s) isomer of omeprazole. Clin Pharmacokinet 2001; 40: 411–26

    Article  PubMed  CAS  Google Scholar 

  36. Roh H, Chung J, Oh D, et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52: 265–71

    Article  PubMed  CAS  Google Scholar 

  37. Zhang-Wang J, Beiser M, Zipursky RB, et al. An investigation of ethnic and gender differences in the pharmacodynamics of haloperidol. Psychiatry Res 1998; 81: 333–9

    Article  Google Scholar 

  38. Lin KM, Poland RE, Nuccio I, et al. A longitudinal assessment of haloperidol doses and serum concentrations in Asian and Caucasian schizophrenic patients. Am J Psychiatry 1989; 146: 1307–11

    PubMed  CAS  Google Scholar 

  39. Grant DM, Tang BK, Kalow W. Variability in caffeine metabolism. Clin Pharmacol Ther 1983; 33: 591–602

    Article  PubMed  CAS  Google Scholar 

  40. Kalow W, Tang BK. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 1991; 50: 508–19

    Article  PubMed  CAS  Google Scholar 

  41. Caraco Y, Lagerstrom P, Wood AJJ. Ethnic and genetic determinants of omeprazole disposition and effect. Clin Pharmacol Ther 1996; 60: 157–67

    Article  PubMed  CAS  Google Scholar 

  42. Andersson T, Regardh CG, Lou YC, et al. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 1992; 2: 25–31

    Article  PubMed  CAS  Google Scholar 

  43. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 2002; 34: 47–54

    Article  PubMed  CAS  Google Scholar 

  44. Kroetz DL, Pauli-Magnus C, Hodges LM, et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13: 481–94

    Article  PubMed  CAS  Google Scholar 

  45. Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75: 13–33

    Article  PubMed  CAS  Google Scholar 

  46. Pauli-Magnus C, Kroetz DL. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm Res 2004; 21: 904–13

    Article  PubMed  CAS  Google Scholar 

  47. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78: 260–77

    Article  PubMed  CAS  Google Scholar 

  48. Andersson T, Flockhart DA, Goldstein DB, et al. Drug-metabolizing enzymes: Evidence for clinical utility of pharmacogenomic tests. Clin Pharmacol Ther 2005; 78: 559–81

    Article  PubMed  CAS  Google Scholar 

  49. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473–8

    Article  PubMed  CAS  Google Scholar 

  50. Vertuyft C, Schwab M, Schaeffeler E, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol 2003; 58: 809–12

    Google Scholar 

  51. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72: 584–94

    Article  PubMed  CAS  Google Scholar 

  52. Kurata Y, Leiri I, Kimura M, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther 2002; 72: 209–19

    Article  PubMed  CAS  Google Scholar 

  53. Horinouchi M, Sakaeda T, Nakamura T, et al. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharm Res 2002; 19: 1581–5

    Article  PubMed  CAS  Google Scholar 

  54. Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res 2001; 18: 1400–4

    Article  PubMed  CAS  Google Scholar 

  55. Becquemont L, Verstuyft C, Kerb R, et al. Effect of grapefruit juice on digoxin pharmacokinetics in humans. Clin Pharmacol Ther 2001; 70: 317–26

    Google Scholar 

  56. Gerloff T, Schaeffer M, Johne A, et al. MDR genotypes do not influence the absorption of a single oral dose of 1mg digoxin in healthy white males. Br J Clin Pharmacol 2002; 54: 610–6

    Article  PubMed  CAS  Google Scholar 

  57. Castaneda-Hernandez G, Hoyo-Vadillo C, Herrera JE. Differences in nifedipine concentration-effect relationship between capsule and slow release tablet administration. Int J Clin Pharmacol Ther 1995; 33: 56–60

    PubMed  CAS  Google Scholar 

  58. Kleinbloesem GH, von Brummelen P, Faber H, et al. Variability in nifedipine pharmacokinetics and dynamics: a new oxidation polymorphism in man. Biochem Pharmacol 1984; 33: 3721–4

    Article  PubMed  CAS  Google Scholar 

  59. Lobo J, Jack DB, Kendall MJ. The intra- and inter-subject variability of nifedipine pharmacokinetics in young volunteers. Eur J Clin Pharmacol 1986; 30: 57–60

    Article  PubMed  CAS  Google Scholar 

  60. Beerahee M, Wilkins MR, Jack DB, et al. Twelve hour (trough) plasma nifedipine concentrations during chronic treatment with Nifedipine Retard. Eur J Clin Pharmacol 1987; 32: 347–9

    Article  PubMed  CAS  Google Scholar 

  61. Renwick AG, Robertson DRC, Macklin B, et al. The pharmacokinetics of oral nifedipine: a population study. Br J Clin Pharmacol 1988; 25: 701–8

    Article  PubMed  CAS  Google Scholar 

  62. Schellens JHM, Soons PA, Breimer DD. Lack of bimodality in nifedipine plasma kinetics in a larger population of healthy subjects. Biochem Pharmacol 1988; 37: 2507–10

    Article  PubMed  CAS  Google Scholar 

  63. Hoyo-Vadillo C, Castaneda-Hernandez G, Herrera JE, et al. Pharmacokinetics of oral nifedipine: relevance of the distribution phase. J Clin Pharmacol 1989; 29: 251–6

    PubMed  CAS  Google Scholar 

  64. Hoyo-Vadillo C, Castaneda-Hernandez G, Herrera JE, et al. Pharmacokinetics of nifedipine slow release tablet in Mexican subjects: further evidence for an oxidation polymorphism. J Clin Pharmacol 1989; 29: 816–20

    PubMed  CAS  Google Scholar 

  65. Ahsan CH, Renwick AG, Macklin B, et al. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol 1991; 31: 399–403

    Article  PubMed  CAS  Google Scholar 

  66. Castaneda-Hernandez G, Hoyo-Vadillo C, Palma-Aguirre JA, et al. Pharmacokinetics of oral nifedipine in different populations. J Clin Pharmacol 1992; 32: 140–5

    Google Scholar 

  67. Ahsan CH, Renwick AG, Waller DG, et al. The influences of dose and ethnic origins on the pharmacokinetics of nifedipine. Clin Pharmacol Ther 1993; 54: 329–38

    Article  PubMed  CAS  Google Scholar 

  68. Davies GJ, Growder M, Reid B, et al. Bowel function measurements of individuals with different eating patterns. Gut 1986; 27: 164–9

    Article  PubMed  CAS  Google Scholar 

  69. Prescott LF, Yoovathaworn K, Makarananda K, et al. Impaired absorption of paracetamol in vegetarians. Br J Clin Pharmacol 1993; 36: 237–40

    Article  PubMed  CAS  Google Scholar 

  70. Chen M-L. Confounding factors for sex differences in pharmacokinetics and pharmacodynamics: focus on dosing regimen, dosage form, and formulation. Clin Pharmacol Ther 2005; 78: 322–9

    Article  PubMed  CAS  Google Scholar 

  71. Muck W, Unger S, Kawano K, et al. Inter-ethnic comparisons of the pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Br J Clin Pharmacol 1998; 45(6): 583–90

    Article  PubMed  CAS  Google Scholar 

  72. Shimoda K, Jerling M, Bottiger Y, et al. Pronounced differences in the disposition of clomipramine between Japanese and Swedish patients. J Clin Psychopharmacol 1999; 19(5): 393–400

    Article  PubMed  CAS  Google Scholar 

  73. Krecic-Shepard ME, Park K, Barnas C, et al. Race and sex influence clearance of nifedipine: results of a population study. Clin Pharmacol Ther 2000; 68: 130–42

    Article  PubMed  CAS  Google Scholar 

  74. Kang D, Verotta D, Krecic-Shepard ME, et al. Population analysis of sustained-release verapamil in patients: effects of sex, race, and smoking. Clin Pharmacol Ther 2003; 73: 31–40

    Article  PubMed  CAS  Google Scholar 

  75. Tatami S, Yamamura N, Sarashina A, et al. Pharmacokinetic comparison of an angiotensin II receptor antagonist, telmisartan, in Japanese and western hypertensive patients using population pharmacokinetic method. Drug Metab Pharmacokinet 2004; 19: 15–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The opinions expressed in this article are those of the author and do not necessarily represent the views or policies of the US Food and Drug Administration. No special funding was sought or obtained for writing this article. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Ling Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ML. Ethnic or Racial Differences Revisited. Clin Pharmacokinet 45, 957–964 (2006). https://doi.org/10.2165/00003088-200645100-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200645100-00001

Keywords

Navigation