Skip to main content
Log in

Osteoporosis in Men

New Insights into Aetiology, Pathogenesis, Prevention and Management

  • Review Article
  • Disease Management
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Osteoporosis is increasingly recognised in men. Low bone mass, risk factors for falling and factors causing fractures in women are likely to cause fractures in men. Bone mass is largely genetically determined, but environmental factors also contribute. Greater muscle strength and physical activity are associated with higher bone mass, while radial bone loss is greater in cigarette smokers or those with a moderate alcohol intake.

Sex hormones have important effects on bone physiology. In men, there is no abrupt cessation of testicular function or ‘andropause’ comparable with the menopause in women; however, both total and free testosterone levels decline with age. A common secondary cause of osteoporosis in men is hypogonadism. There is increasing evidence that estrogens are important in skeletal maintenance in men as well as women. Peripheral aromatisation of androgens to estrogens occurs and osteoblast-like cells can aromatise androgens into estrogens. Human models exist for the effects of estrogens on the male skeleton. In men aged >65 years, there is a positive association between bone mineral density (BMD) and greater serum estradiol levels at all skeletal sites and a negative association between BMD and testosterone at some sites.

It is crucial to exclude pathological causes of osteoporosis, because 30 to 60% of men with vertebral fractures have another illness contributing to bone disease. Glucocorticoid excess (predominantly exogenous) is common. Gastrointestinal disease predisposes patients to bone disease as a result of intestinal malabsorption of calcium and colecalciferol (vitamin D). Hypercalciuria and nephrolithiasis, anticonvulsant drug use, thyrotoxicosis, immobilisation, liver and renal disease, multiple myeloma and systemic mastocytosis have all been associated with osteoporosis in men.

It is possible that low-dose estrogen therapy or specific estrogen receptor-modulating drugs might increase BMD in men as well as in women. In the future, parathyroid hormone peptides may be an effective treatment for osteoporosis, particularly in patients in whom other treatments, such as bisphosphonates, have failed. Men with idiopathic osteoporosis have low circulating insulin-like growth factor-1 (IGF-1; somatomedin-1) concentrations, and IGF-1 administration to these men increases bone formation markers more than resorption markers. Studies of changes in BMD with IGF-1 treatment in osteoporotic men and women are underway.

Osteoporosis in men will become an increasing worldwide public health problem over the next 20 years, so it is vital that safe and effective therapies for this disabling condition become available. Effective public health measures also need to be established and targeted to men at risk of developing the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995; 16: 87–116

    PubMed  CAS  Google Scholar 

  2. Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a worldwide projection. Osteoporosis Int 1992; 2: 285–9

    Article  CAS  Google Scholar 

  3. Cooper C, Atkinson EJ, O’Fallon MW, et al. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota 1985–1989. J Bone Miner Res 1992; 7: 221–7

    Article  PubMed  CAS  Google Scholar 

  4. Seeman E. Osteoporosis in men: epidemiology, pathophysiology and treatment possibilities. Am J Med 1993; 95: 225–85

    Article  Google Scholar 

  5. Parfitt AM, Duncan H. Metabolic bone disease affecting the spine. In: Rothman R, editor. The spine. 2nd ed. Philadelphia: Saunders, 1982; 775–905

    Google Scholar 

  6. Jones G, Nguyen T, Sambrook PN, et al. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporosis Int 1994; 4: 277–82

    Article  CAS  Google Scholar 

  7. Melton LJ III, Thamer M, Ray NF, et al. Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12: 16–23

    Article  PubMed  Google Scholar 

  8. Poor G, Atkinson EJ, Lewallen DG, et al. Age-related hip fractures in men: clinical spectrum and short term outcomes. Osteoporosis Int 1995; 5: 419–26

    Article  CAS  Google Scholar 

  9. Burger H, Van Daele PLA, Grasluis K, et al. Vertebral deformities and functional impairment in men and women. J Bone Miner Res 1997; 12: 152–7

    Article  PubMed  CAS  Google Scholar 

  10. Randell A, Sambrook PN, Nguyen TV, et al. Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporosis Int 1995; 5: 427–32

    Article  CAS  Google Scholar 

  11. Ross PD, Kim S, Wasnich RD. Bone density predicts vertebral fracture risk in both men and women [abstract]. J Bone Miner Res 1996; 11 (S1): A132

    Google Scholar 

  12. Nguyen TV, Eisman JA, Kelly PJ, et al. Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol 1996; 144: 255–63

    Article  PubMed  CAS  Google Scholar 

  13. Poor G, Atkinson EJ, O’Fallon WM, et al. Predictors of hip fractures in elderly men. J Bone Miner Res 1995; 10: 1900–7

    Article  PubMed  CAS  Google Scholar 

  14. Stanley HL, Schmitt BP, Poses RM, et al. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture. J Am Geriatr Soc 1991; 39: 766–71

    PubMed  CAS  Google Scholar 

  15. Cooper C, Coupland C, Mitchell M. Rheumatoid arthritis corticosteroid therapy and hip fracture. Ann Rheum Dis 1995; 54: 49–52

    Article  PubMed  CAS  Google Scholar 

  16. Christian JC, Yu P-L, Slemenda CW, et al. Hereditability of bone mass: a longitudinal study of aging male twins. Am J Hum Genet 1989; 44: 429–33

    PubMed  CAS  Google Scholar 

  17. Pocock NA, Eisman JA, Hopper JL, et al. Genetic determinants of bone mass in adults. J Clin Invest 1987; 80: 706–10

    Article  PubMed  CAS  Google Scholar 

  18. Snow-Harter CR, Whalen K, Mybrugh S, et al. Bone mineral density, muscle strength, and recreational exercise in men. J Bone Miner Res 1992; 7: 1291–6

    Article  PubMed  CAS  Google Scholar 

  19. Slemenda CW, Christian JC, Reed T, et al. Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern Med 1992; 117: 286–91

    PubMed  CAS  Google Scholar 

  20. Jones G, Nguyen T, Sambrook P, et al. Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo Osteoporosis Epidemiology Study. BMJ 1995; 309: 691–5

    Article  Google Scholar 

  21. Riggs BL, Melton LJ III. Involutional Osteoporosis. N Engl J Med 1986; 314: 1676–86

    Article  PubMed  CAS  Google Scholar 

  22. Garn SM, Sullivan TV, Decker SA, et al. Continuing bone expansion and increasing bone loss over a two-decade period in men and women from a total community sample. Am J Hum Biol 1992; 4: 57–67

    Article  Google Scholar 

  23. Mosekilde L, Mosekilde L. Normal vertebral body size and compressive strength relations to age and to vertebral and iliac bone compressive strength. Bone 1986; 7: 207–12

    Article  PubMed  CAS  Google Scholar 

  24. Compston JE, Mellish RWE, Groucher P, et al. Structural mechanisms of trabecular bone loss in men. Bone Miner 1989; 6: 339–50

    Article  PubMed  CAS  Google Scholar 

  25. Beck TJ, Ruff CB, Scott Jr WW, et al. Sex differences in geometry of femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 1992; 50: 24–9

    Article  PubMed  CAS  Google Scholar 

  26. Ebeling PR, Petrson JM, Riggs BL. Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J Bone Miner Res 1992; 7: 1243–50

    Article  PubMed  CAS  Google Scholar 

  27. Tsai KS, Pan WH, Hsu SH, et al. Sexual differences in bone markers and bone mineral density of normal Chinese. Calcif Tissue Int 1996; 59: 454–60

    PubMed  CAS  Google Scholar 

  28. Schneider DL, Barett-Connor EL. Urinary N-telopeptide levels discriminate normal osteopenic and osteoporotic bone mineral density. Arch Intern Med 1997; 157: 1241–5

    Article  PubMed  CAS  Google Scholar 

  29. Sone T, Miyake M, Takeda N, et al. Urinary excretion of type I N-telopeptides in healthy Japanese adults: age- and sex-related changes and reference limits. Bone 1995; 17: 335–9

    Article  PubMed  CAS  Google Scholar 

  30. Krall EA, Dawson-Hughes B, Hirst K, et al. Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women. J Gerontol A Biol Sci Med Sci 1997; 52: M61–7

    Article  PubMed  CAS  Google Scholar 

  31. Endres DB, Morgan CH, Garry PJ, et al. Age-related changes in serum immunoreactive parathyroid hormone and its biological action in healthy men and women. J Clin Endocrinol Metab 1987; 65: 724–31

    Article  PubMed  CAS  Google Scholar 

  32. Orwoll ES, Meier DE. Alterations in calcium, vitamin D, and parathyroid hormone physiology in normal men with aging: relationship to the development of senile osteopenia. J Clin Endocrinol Metab 1986; 63: 1262–9

    Article  PubMed  CAS  Google Scholar 

  33. Slovik DM, Adams JS, Neer RM, et al. Deficient production of 1,25-dihydroxy vitamin D in elderly osteoporotic patients. N Engl J Med 1981; 305: 372–4

    Article  PubMed  CAS  Google Scholar 

  34. Halloran BP, Portale AA, Lonergan ET, et al. Production and metabolic clearance of 1,25-dihydroxy vitamin D in men: effect of advancing age. J Clin Endocrinol Metab 1990; 70: 318–23

    Article  PubMed  CAS  Google Scholar 

  35. Ebeling PR, Sandgren ME, Di Magno EP, et al. Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptors in normal women. J Clin Endocrinol Metab 1992; 75: 176–82

    Article  PubMed  CAS  Google Scholar 

  36. Kinyamu HK, Gallagher JC, Prahl JM, et al. Association between intestinal vitamin D receptor, calcium absorption, and serum 1,25 dihydroxyvitamin D in normal young and elderly women. J Bone Miner Res 1997; 12: 922–8

    Article  PubMed  CAS  Google Scholar 

  37. Morrison NA, Qi JC, Tokita A, Kelly PJ, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367: 284–7

    Article  PubMed  CAS  Google Scholar 

  38. Krall EA, Parry P, Lichter JB, et al. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res 1995; 10: 978–84

    Article  PubMed  CAS  Google Scholar 

  39. Kroger H, Laitinen K. Bone mineral density measured by dual-energy x-ray absorptiometry in normal men. Eur J Clin Invest 1992; 22: 454–60

    Article  PubMed  CAS  Google Scholar 

  40. Kelly PJ, Pocock NA, Sambrook PN, et al. Dietary calcium, sex hormones and bone mineral density in men. BMJ 1990; 300: 1361–4

    Article  PubMed  CAS  Google Scholar 

  41. Looker AC, Harris TB, Madans JH, et al. Dietary calcium and hip fracture risk: the NHANES epidemiologic follow-up study. Osteoporosis Int 1993; 3: 177–84

    Article  CAS  Google Scholar 

  42. Dawson-Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997; 337: 670–6

    Article  PubMed  CAS  Google Scholar 

  43. Francis RM, Peacock M, Marshall DH, et al. Spinal osteoporosis in men. Bone Miner 1989; 5: 347–57

    Article  PubMed  CAS  Google Scholar 

  44. MacAdams MR, White RH, Chipps BE. Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Intern Med 1986; 104: 648–51

    PubMed  CAS  Google Scholar 

  45. Chavassieux P, Serre CM, Vernaud P. In vitro evaluation of dose-effect of ethanol on human osteoblastic cells. Bone Miner 1993; 22: 95–103

    Article  PubMed  CAS  Google Scholar 

  46. Diamond T, Stiel D, Lunzer M, et al. Ethanol reduced bone formation and may cause osteoporosis. Am J Med 1989; 86: 282–8

    Article  PubMed  CAS  Google Scholar 

  47. Hopper JL, Seeman E. The bone density of female twins discordant for smoking. N Engl J Med 1994; 330: 387–92

    Article  PubMed  CAS  Google Scholar 

  48. Seeman E, Melton LJ III. Risk factors for spinal osteoporosis in males. Am J Med 1983; 75: 977–83

    Article  PubMed  CAS  Google Scholar 

  49. Francis RM, Peacock M, Marshall DH, et al. Spinal osteoporosis in men. Bone Miner 1989; 5: 347–57

    Article  PubMed  CAS  Google Scholar 

  50. Francis RM, Peacock M. Osteoporosis in hypogonadal men: role of decreased plasma 1,25-dihydroxy vitamin D, calcium malabsorption and low bone formation. Bone 1986; 261–8

    Google Scholar 

  51. Parfitt AM, Duncan H. Metabolic bone disease affecting the spine. In: Rothman R, editor. The spine. 2nd ed. Philadelphia: Saunders, 1982: 775–905

    Google Scholar 

  52. Nordin BEC, Aaron J, Speed R, et al. Bone formation and resorption as the determinants of trabecular bone volume in normal and osteoporotic men. Scott Med J 1984; 29: 171–5

    PubMed  CAS  Google Scholar 

  53. Aaron JE, Francis RM, Peacock M, et al. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop 1989; 243: 294–305

    PubMed  Google Scholar 

  54. Ferrini RL, Barrett-Connort E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bio-available fractions in community-dwelling men. Am J Epidemiol 1998; 15: 750–4

    Article  Google Scholar 

  55. Clarke BL, Ebeling PR, Wahner HW, et al. Steroid hormones influence bone histomorphometric parameters in healthy men [abstract]. Calcif Tissue Int 1994; 54: 334

    Google Scholar 

  56. Tenover JS. Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 1992; 75: 1092–8

    Article  PubMed  CAS  Google Scholar 

  57. Orwoll ES, Oviatt S. Transdermal testosterone supplementation in normal older men [abstract]. Proc Endocr Soc 1992; A1071

    Google Scholar 

  58. Jackson JA, Kleerekoper M. Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 1987; 65: 53–8

    Article  PubMed  CAS  Google Scholar 

  59. Stepan JJ, Lachman M. Castrated men with bone loss: effect of calcitonin on biochemical indices of bone remodelling. J Clin Endocrinol Metab 1989; 69: 523–7

    Article  PubMed  CAS  Google Scholar 

  60. Katznelson L, Finklestein JS, Schoenfeld DA, et al. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81: 4358–65

    Article  PubMed  CAS  Google Scholar 

  61. Devogelaer JP, De Cooman S, Nagant de Deuxchaisnes C. Low bone mass in hypogonadal males: effect of testosterone substitution therapy, a densitometric study. Maturitas 1992; 15: 17–23

    Article  PubMed  CAS  Google Scholar 

  62. Bagchi MK, Tsai MJ, O’Malley BW, et al. Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems. Endocr Rev 1992; 13: 525–35

    PubMed  CAS  Google Scholar 

  63. Lubahn DB, Joseph DR, Sar M, et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis, and gene expression in prostate. Mol Endocrinol 1988; 2: 1265–75

    Article  PubMed  CAS  Google Scholar 

  64. Edwards A, Hammond HA, Jin L, et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992; 12: 241–53

    Article  PubMed  CAS  Google Scholar 

  65. Sleddens HF, Oostra BA, Brinkmann AO, et al. Trinucleotide (GGN) repeat polymorphism in the human androgen receptor (AR) gene. Hum Mol Genet 1995; 2: 493–7

    Article  Google Scholar 

  66. Kazemi-Esfarjani P, Trifiro M, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenic relevance for the (CAG)n-expanded neuropathies. Hum Mol Genet 1995; 4: 523–7

    Article  PubMed  CAS  Google Scholar 

  67. Cohen P, Peehl DM, Graves HC, et al. Biological effects of prostate specific antigens as an insulin-like growth factor binding protein-3 protease. J Endocrinol 1994; 142: 407–15

    Article  PubMed  CAS  Google Scholar 

  68. Brass AL, Barnard J, Patai BL, et al. Androgen up-regulates epidermal growth factor receptor expression and binding affinity in PC3 cell lines expressing human androgen receptor. Cancer Res 1995; 54: 3197–203

    Google Scholar 

  69. Wilding G, Valverius E, Knabbe C, et al. Role of transforming growth factor in a human prostate cancer cell growth. Prostate 1989; 15: 1–12

    Article  PubMed  CAS  Google Scholar 

  70. Marcelli M, Haidacher SJ, Plymate SR, et al. Altered growth and insulin-like growth factor binding protein-3 production in PC3 prostate carcinoma cells stably transfected with a constitutively active androgen receptor complementary deoxyribonucleic acid. Endocrinology 1995; 136: 1040–8

    Article  PubMed  CAS  Google Scholar 

  71. Ebeling PR, Jones JD, O’Fallon WM, et al. Short-term effects of recombinant hIGF-I on bone turnover in normal women. J Clin Endocrinol Metab 1993; 77: 1384–7

    Article  PubMed  CAS  Google Scholar 

  72. Kurland ES, Rosen CJ, Cosman F, et al. Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 1997; 82: 2799–805

    Article  PubMed  CAS  Google Scholar 

  73. Spotila LD, Constantinos CD, Sereda L, et al. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: evidence for phenotypic and genetic overlap with mild osteogenesis imperfecta. Proc Natl Acad Sci U S A 1991; 88: 5423–7

    Article  PubMed  CAS  Google Scholar 

  74. Grant SFA, Reid DM, Ralston SH. Osteoporotic fracture and reduced bone density related to a polymorphism in the transcriptional control region of the collagen type I a 1 gene [abstract]. J Bone Miner Res 1995; 10 (S1): A106

    Google Scholar 

  75. Vanderscheueren D, Van Herck E, De Coster R, et al. Aromatisation of androgens is important for skeletal maintenance of aged male rats. Calcif Tissue Int 1996; 59: 179–83

    Article  Google Scholar 

  76. Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994; 331: 1056–61

    Article  PubMed  CAS  Google Scholar 

  77. Kenan Q, Fisher CR, Grumbach MM, et al. Aromatase deficiency in a male subject: characterization of a mutation in the CYP gene in an affected family [abstract]. Endocrinol Soc 1995; A P3–27

    Google Scholar 

  78. Bilezikian JP, Morishima A, Bell J, et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998; 339: 599–603

    Article  PubMed  CAS  Google Scholar 

  79. Slemenda CW, Longcope C, Zhou L, et al. Sex steroids and bone mass in older men: positive associations with serum estrogens and negative associations with androgens. J Clin Invest 1997; 100: 1755–9

    Article  PubMed  CAS  Google Scholar 

  80. Van Kesteren, Lips P, Deville W, et al. The effect of one-year cross-sex hormonal treatment on bone metabolism and serum insulin-like growth factor-I treatment in transsexuals. J Clin Endocrinol Metab 1996; 81: 2227–32

    Article  PubMed  Google Scholar 

  81. Lubahn DB, Moyer JS, Golding TS, et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 1993; 90: 11162–6

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi S, Inoue S, Hosoi T, et al. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996; 11: 306–11

    Article  PubMed  CAS  Google Scholar 

  83. Agrawal R, Wallack S, Cohn S, et al. Calcitonin treatment of osteoporosis. In: Pecile A, editor. Calcitonin. Amsterdam: Exerpta Medica, 1981; 540: 237

    Google Scholar 

  84. Selby PL, Rehman MT, Economou G, et al. Etidronate in male osteoporosis: evidence for a site-specific action [abstract]. In: Christiansen C, editor. Osteoporosis 1993. Aalborg: Aalborg APS, 1993: 197

    Google Scholar 

  85. Anderson FH, Francis RM, Bishop JC, et al. Effect of intermittent cyclical disodium etidronate therapy on bone mineral density in men with vertebral fractures. Age Ageing 1997; 26: 359–65

    Article  PubMed  CAS  Google Scholar 

  86. Orme SM, Simpson M, Stewart SP, et al. Comparison of changes in idiopathic and secondary osteoporosis following therapy with disodium etidronate and high dose calcium supplementation. Clin Endocrinol (Oxf) 1994; 41: 245–50

    Article  CAS  Google Scholar 

  87. Anderson FH, Francis RM, Peaston RT, et al. Androgen supplementation in eugonadal men with osteoporosis: effects of six months treatment on markers of bone formation and bone resorption. J Bone Miner Res 1997; 12: 472–8

    Article  PubMed  CAS  Google Scholar 

  88. Slovik DM, Rosenthal DI, Doppelt SH, et al. Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1–34) and 1,25-dihydroxy vitamin D. J Bone Miner Res 1986; 1: 377–81

    Article  PubMed  CAS  Google Scholar 

  89. Reeve J, Davis UM, Hesp R, et al. Human parathyroid peptide treatment of osteoporosis substantially increases spinal trabecular bone (with observations on the effects of sodium fluoride therapy). BMJ 1990; 301: 314–8 477

    Article  PubMed  CAS  Google Scholar 

  90. Lindsay R, Cosman F, Shen V, et al. Bone mass increments induced by PTH treatment can be maintained by oestrogen [abstract]. J Bone Miner Res 1995; 10 (S2): A200

    Google Scholar 

  91. Hodsman AB, Steer BM, Fraher L, et al. Bone densitometric and histomorphometric responses to sequential human parathyroid hormone (1–38) and salmon calcitonin in osteoporotic patients. Bone Miner 1991; 14: 67–83

    Article  PubMed  CAS  Google Scholar 

  92. Greenspan SL, Holland S, Maitland-Ramsey L, et al. Nocturnal stimulation of parathyroid hormone: a mechanism to explain the continued improvement in bone mineral density following alendronate therapy [abstract]. J Bone Miner Res 1995; 10 (S1): A449

    Google Scholar 

  93. Finkelsten JS, Klibanski A, Schafer EH, et al. Parathyroid hormone for the prevention of bone loss induced by oestrogen deficiency. N Engl J Med 1994; 331: 1618–23

    Article  Google Scholar 

  94. Rudman D, Feller AG, Hoskote S, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990; 323: 1–6

    Article  PubMed  CAS  Google Scholar 

  95. Holloway L, Kohlmeier L, Kent K, et al. Skeletal effects of cyclic recombinant human growth hormone and salmon calcitonin in osteopenic postmenopausal women. J Clin Endocrinol Metab 1997; 82: 1111–7

    Article  PubMed  CAS  Google Scholar 

  96. Ghiron LJ, Thompson JL, Holloway L, et al. Effects of recombinant insulin-like growth factor-1 and growth hormone on bone turnover in elderly women. J Bone Miner Res 1995; 10: 1844–52

    Article  PubMed  CAS  Google Scholar 

  97. Orwoll ES, Oviatt S, McClung MR, et al. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med 1990; 112: 29–34

    PubMed  CAS  Google Scholar 

  98. Dawson-Hughes B, Dallal GE, Krall EA, et al. Acontrolled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med 1990; 323: 878–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Robert Ebeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebeling, P.R. Osteoporosis in Men. Drugs & Aging 13, 421–434 (1998). https://doi.org/10.2165/00002512-199813060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199813060-00002

Keywords

Navigation