Skip to main content
Log in

Vitamins and Cognition

What is the Evidence?

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Vitamin supplements are consumed for their purported health benefits by a large segment of the populations of developed countries. Several indirect strands of evidence suggest that increasing levels of vitamins may improve brain function. These include evidence that individual vitamins are intrinsically involved in the cellular and physiological processes underpinning brain function; that small proportions of the population exhibit biochemical deficiencies in each individual vitamin, suggesting that a much larger proportion have less than optimal overall micronutrient status; and that epidemiological research suggests a relationship between individual vitamins (or the potentially neurotoxic amino acid homocysteine, which is related to B vitamin status), and cognitive function and mood. The related question as to whether direct supplementation with vitamins can therefore improve psychological functioning in cognitively intact individuals has been addressed in a number of studies. The evidence reviewed here suggests that, whereas studies involving supplementation with single vitamins, or restricted ranges of vitamins, have demonstrated equivocal results, evidence from studies involving the administration of broader ranges of vitamins, or multivitamins, suggest potential efficacy in terms of cognitive and psychological functioning. In contrast to the literature investigating restricted ranges of vitamins, most of the evidence regarding multivitamins was collected from healthy, non-elderly samples, suggesting that more research in this population is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Radimer K, Bindewald B, Hughes J, et al. Dietary supplement use by US adults: Data from the National Health and Nutrition Examination Survey, 1999–2000. Am J Epidemiol 2004 Aug; 160(4): 339–49

    Article  PubMed  Google Scholar 

  2. Rock CL. Multivitamin-multimineral supplements: who uses them? Am J Clin Nutr 2007 Jan; 85(1): 277S-9S

    Google Scholar 

  3. Li KR, Kaaks R, Linseisen J, et al. Consistency of vitamin and/or mineral supplement use and demographic, lifestyle and health-status predictors: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr 2010; 104(7): 1058–64

    Article  PubMed  CAS  Google Scholar 

  4. Timbo BB, Ross MP, McCarthy PV, et al. Dietary supplements in a national survey: prevalence of use and reports of adverse events. J Am Diet Assoc 2006; 106(12): 1966–74

    Article  PubMed  CAS  Google Scholar 

  5. Pauling L. Evolution and need for ascorbic acid. Proc Natl Acad Sci U S A 1970; 67(4): 1643–8

    Article  PubMed  CAS  Google Scholar 

  6. Nishikimi M, Kawai T, Yagi K. Guinea-pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for l-ascorbic-acid biosynthesis missing in this species. J Biol Chem 1992 Oct; 267(30): 21967–72

    PubMed  CAS  Google Scholar 

  7. Yuen AWC, Jablonski NG. Vitamin D: in the evolution of human skin colour. Med Hypotheses 2010; 74(1): 39–44

    Article  PubMed  CAS  Google Scholar 

  8. Lucock M, Yates Z, Glanville T, et al. A critical role for B-vitamin nutrition in human developmental and evolutionary biology. Nutr Res 2003; 23(11): 1463–75

    Article  CAS  Google Scholar 

  9. Challem JJ. Did the loss of endogenous ascorbate propel the evolution of Anthropoidea and Homo sapiens? Med Hypotheses 1997 May; 48(5): 387–92

    Article  PubMed  CAS  Google Scholar 

  10. Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition 2000 Jul-Aug; 16(7–8): 480–3

    Article  PubMed  CAS  Google Scholar 

  11. Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A-Mol Integr Physiol 2003 Sep; 136(1): 113–26

    Article  PubMed  CAS  Google Scholar 

  12. Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr 1997 Apr; 51(4): 207–16

    Article  PubMed  CAS  Google Scholar 

  13. Wagner E, Luo T, Drager UC. Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb Cortex 2002; 12(12): 1244–53

    Article  PubMed  Google Scholar 

  14. Werner EA, Deluca HF. Retinoic acid is detected at relatively high levels in the CNS of adult rats. Am J Physiol Endocrinol Metab 2002; 282: E672–8

    PubMed  CAS  Google Scholar 

  15. Dev S, Adler AJ, Edwards RB. Adult rabbit brain synthesizes retinoic acid. Brain Res 1993; 632: 325–8

    Article  PubMed  CAS  Google Scholar 

  16. Olson CR, Mello CV. Significance of vitamin A to brain function, behaviour and learning. Mol Nutr Food Res 2010; 54(4): 489–95

    Article  PubMed  CAS  Google Scholar 

  17. Etchamendy N, Enderlin V, Marighetto A, et al. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 2003; 145(1–2): 37–49

    Article  PubMed  CAS  Google Scholar 

  18. Mey J, McCaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 2004 Oct 1; 10(5): 409–21

    Article  PubMed  CAS  Google Scholar 

  19. McCaffery P, Zhang J, Crandall JE. Retinoic acid signaling and function in the adult hippocampus. J Neurobiol 2006; 66(7): 780–91

    Article  PubMed  CAS  Google Scholar 

  20. Krezel W, Ghyselinck N, Samad TA, et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 1998; 279: 863–7

    Article  PubMed  CAS  Google Scholar 

  21. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75(4): 275–93

    Article  PubMed  CAS  Google Scholar 

  22. Krezel W, Kastner P, Chambon P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 1999; 89: 1291–300

    Article  PubMed  CAS  Google Scholar 

  23. Husson M, Enderlin V, Alfos S, et al. Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A-deprived rats. Mol Brain Res 2004; 123(1–2): 7–17

    Article  PubMed  CAS  Google Scholar 

  24. Valdenaire O, Maus-Moatti M, Vincent JD, et al. Retinoic acid regulates the developmental expression of dopamine D2 receptor in rat striatal primary cultures. J Neurochem 1998; 71(3): 929–36

    Article  PubMed  CAS  Google Scholar 

  25. Valdenaire O, Vernier P, Maus M, et al. Transcription of the rat dopamine-D2-receptor gene from two promoters. Eur J Biochem 1994; 220(2): 577–84

    Article  PubMed  CAS  Google Scholar 

  26. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2008 Apr 1; 22(4): 982–1001

    Article  PubMed  CAS  Google Scholar 

  27. Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 2008; 29(6): 415–22

    Article  PubMed  CAS  Google Scholar 

  28. Brigelius-Flohe R. Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 2009 Mar; 46(5): 543–54

    Article  PubMed  CAS  Google Scholar 

  29. Goti D, Balazs Z, Panzenboeck U, et al. Effects of lipoprotein lipase on uptake and transcytosis of low density lipoprotein (LDL) and LDL-associated α-tocopherol in a porcine in vitro blood-brain barrier model. J Biol Chem 2002 Aug 9; 277(32): 28537–44

    Article  PubMed  CAS  Google Scholar 

  30. Mardones P, Rigotti A. Cellular mechanisms of vitamin E uptake: relevance in [alpha]-tocopherol metabolism and potential implications for disease. J Nutr Biochem 2004; 15(5): 252–60

    Article  PubMed  CAS  Google Scholar 

  31. Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res 2007 May–Jun; 35(3): 277–89

    PubMed  CAS  Google Scholar 

  32. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003 Mar; 26(3): 137–46

    Article  PubMed  CAS  Google Scholar 

  33. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol 2006 Nov; 5(11): 949–60

    Article  PubMed  CAS  Google Scholar 

  34. Boadlebiber MC. Regulation of serotonin synthesis. Prog Biophys Mol Biol 1993; 60(1): 1–15

    Article  CAS  Google Scholar 

  35. Calderon-Guzman D, Hernandez-Islas JL, Espitia-Vazquez I, et al. Pyridoxine, regardless of serotonin levels, increases production of 5-hydroxytryptophan in rat brain. Arch Med Res 2004 Jul–Aug; 35(4): 271–4

    Article  PubMed  CAS  Google Scholar 

  36. Mefford IN, Oke AF, Adams RN. Regional distribution of ascorbate in human-brain. Brain Res 1981; 212(1): 223–6

    Article  PubMed  CAS  Google Scholar 

  37. Mun GH, Kim MJ, Lee JH, et al. Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res 2006 Apr; 83(5): 919–28

    Article  PubMed  CAS  Google Scholar 

  38. Padayatty SJ, Katz A, Wang YH, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003 Feb; 22(1): 18–35

    PubMed  CAS  Google Scholar 

  39. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009 Mar; 46(6): 719–30

    Article  PubMed  CAS  Google Scholar 

  40. Young VR. Evidence for a recommended dietary allowance for vitamin C from pharmacokinetics: a comment and analysis. Proc Natl Acad Sci U S A 1996 Dec; 93(25): 14344–8

    Article  PubMed  CAS  Google Scholar 

  41. Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 1996; 93: 3704–9

    Article  PubMed  CAS  Google Scholar 

  42. Shibata K, Fukuwatari T, Ohta M, et al. Values of water-soluble vitamins in blood and urine of Japanese young men and women consuming a semi-purified diet based on the Japanese dietary reference intakes. J Nutr Sci Vitaminol 2005 Oct; 51(5): 319–28

    Article  PubMed  CAS  Google Scholar 

  43. Shibata K, Fukuwatari T, Watanabe T, et al. Intra- and inter-individual variations of blood and urinary water-soluble vitamins in Japanese young adults consuming a semi-purified diet for 7 days. J Nutr Sci Vitaminol 2009 Dec; 55(6): 459–70

    Article  PubMed  CAS  Google Scholar 

  44. Caudill MA. Folate bioavailability: implications for establishing dietary recommendations and optimizing status. Am J Clin Nutr 2009 May; 91(5): 1455S-60S

    Article  CAS  Google Scholar 

  45. Kauwell GPA, Wilsky CE, Cerda JJ, et al. Methylenetetrahydrofolate reductase mutation (677C → T) negatively influences plasma homocysteine response to marginal folate intake in elderly women. Metabolism 2000 Nov; 49(11): 1440–3

    Article  PubMed  CAS  Google Scholar 

  46. Challem JJ. Toward a new definition of essential nutrients: is it now time for a third ‘vitamin’ paradigm? Med Hypotheses 1999; 52(5): 417–22

    Article  PubMed  CAS  Google Scholar 

  47. Ruston D, Hoare J, Henderson L, et al. National Diet and Nutrition Survey: adults aged 19–64 years. Volume 4: nutritional status (anthropometry and blood analytes), blood pressure and physical activity. London: TSO; 2004

    Google Scholar 

  48. Nelson M, Erens B, Bates B, et al. Low income diet and nutrition survey. London: TSO, 2007

    Google Scholar 

  49. Schleicher RL, Carroll MD, Ford ES, et al. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr 2009 Nov; 90(5): 1252–63

    Article  PubMed  CAS  Google Scholar 

  50. Evatt ML, Terry PD, Ziegler TR, et al. Association between vitamin B-12-containing supplement consumption and prevalence of biochemically defined B-12 deficiency in adults in NHANES III (Third National Health and Nutrition Examination Survey). Pub Health Nutr 2010 Jan; 13(1): 25–31

    Article  Google Scholar 

  51. Castetbon K, Vernay M, Malon A, et al. Dietary intake, physical activity and nutritional status in adults: the French nutrition and health survey (ENNS, 2006–2007). Br J Nutr 2009 Sep; 102(5): 733–43

    Article  PubMed  CAS  Google Scholar 

  52. Pfeiffer CM, Caudill SP, Gunter EW, et al. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 2005 Aug; 82(2): 442–50

    PubMed  CAS  Google Scholar 

  53. Ford ES, Schleicher RL, Mokdad AH, et al. Distribution of serum concentrations of alpha-tocopherol and gammatocopherol in the US population. Am J Clin Nutr 2006 Aug; 84(2): 375–83

    PubMed  CAS  Google Scholar 

  54. Ahuja JKC, Goldman JD, Moshfegh AJ. Current status of vitamin E nutriture. In: Kelly F, Meydani M, Packer L, editors. Vitamin E and health. New York: New York Academy of Sciences, 2004: 387–90

    Google Scholar 

  55. Holick MF. Vitamin D deficiency. N Engl J Med 2007 Jul; 357(3): 266–81

    Article  PubMed  CAS  Google Scholar 

  56. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006 Jul; 84(1): 18–28

    PubMed  CAS  Google Scholar 

  57. Smith AD. The worldwide challenge of the dementias: A role for B vitamins and homocysteine? Food Nutr Bull 2008; 29(2): S143–72

    PubMed  Google Scholar 

  58. Van Dam F, Van Gool WA. Hyperhomocysteinemia and Alzheimer’s disease: a systematic review. Arch Gerontol Geriatr 2009; 48(3): 425–30

    Article  PubMed  CAS  Google Scholar 

  59. Dangour AD, Whitehouse PJ, Rafferty K, et al. B-Vitamins and fatty acids in the prevention and treatment of Alzheimer’s disease and dementia: a systematic review. J Alzheimers Dis 2010; 22(1): 205–24

    PubMed  CAS  Google Scholar 

  60. Kennedy D, Jones E, Haskell C. Vitamin status, cognition and mood in cognitively intact adults. In: Benton D, editor. Lifetime nutritional influences on cognition, behaviour and psychiatric illness. Cambridge: Woodhead Publishing, 2011

    Google Scholar 

  61. La Rue A, Koehler K, Wayne S, et al. Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr 1997 Jan 1; 65(1): 20–9

    PubMed  CAS  Google Scholar 

  62. Cherubini A, Martin A, Andres-Lacueva C, et al. Vitamin E levels, cognitive impairment and dementia in older persons: the InCHIANTI study. Neurobiol Aging 2005; 26(7): 987–94

    Article  PubMed  CAS  Google Scholar 

  63. Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc 1997 Jun; 45(6): 718–24

    PubMed  CAS  Google Scholar 

  64. Kang JH, Grodstein F. Plasma carotenoids and tocopherols and cognitive function: a prospective study. Neurobiol Aging 2008; 29: 1394–403

    Article  PubMed  CAS  Google Scholar 

  65. McGrath J, Scragg R, Chant D, et al. No association between serum 25-hydroxyvitamin D3 level and performance on psychometric tests in NHANES III. Neuroepidemiology 2007; 29(1–2): 49–54

    Article  PubMed  Google Scholar 

  66. Lee DM, Tajar A, Ulubaev A, et al. Association between 25-hydroxyvitamin D levels and cognitive performance in middle-aged and older European men. J Neurol Neurosurg Psychiatry 2009 Jul; 80(7): 722–9

    Article  PubMed  Google Scholar 

  67. Buell JS, Scott TM, Dawson-Hughes B, et al. Vitamin D is associated with cognitive function in elders receiving home health services. J Gerontol A Biol Sci Med Sci 2009 Aug; 64A(8): 888–95

    Article  CAS  Google Scholar 

  68. Slinin Y, Paudel ML, Taylor BC, et al. 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology 2010 Jan 5; 74(1): 33–41

    Article  PubMed  CAS  Google Scholar 

  69. Balk EM, Raman G, Tatsioni A, et al. Vitamin B-6, B-12, and folic acid supplementation and cognitive function: a systematic review of randomized trials. Arch Intern Med 2007 Jan; 167(1): 21–30

    Article  PubMed  CAS  Google Scholar 

  70. Jia X, McNeill G, Avenell A. Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials. J Hum Nutr Diet 2008; 21(4): 317–36

    Article  PubMed  CAS  Google Scholar 

  71. Malouf R, Grimley Evans J. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 2008; (4): CD004514

  72. Malouf R, Areosa Sastre A. Vitamin B12 for cognition. Cochrane Database Syst Rev 2003; (3): CD004394

  73. Malouf R, Grimley Evans J. Vitamin B6 for cognition. Cochrane Database Syst Rev 2003; (4): CD004393

  74. Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 2010; 123(6): 522–U9

    Article  PubMed  CAS  Google Scholar 

  75. Ford AH, Flicker L, Alfonso H, et al. Vitamins B-12, B-6, and folic acid for cognition in older men. Neurology 2010 Oct; 75(17): 1540–7

    Article  PubMed  CAS  Google Scholar 

  76. Eussen SJ, de Groot LC, Joosten LW, et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am J Clin Nutr 2006; 84(2): 361–70

    PubMed  CAS  Google Scholar 

  77. Lewerin C, Matousek M, Steen G, et al. Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr 2005; 81(5): 1155–62

    PubMed  CAS  Google Scholar 

  78. McMahon JA, Green TJ, Skeaff CM, et al. A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med 2006; 354(26): 2764–72

    Article  PubMed  CAS  Google Scholar 

  79. Durga J, van Boxtel MPJ, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 2007 Jan 26; 369(9557): 208–16

    Article  PubMed  CAS  Google Scholar 

  80. Isaac M, Quinn R, Tabet N. Vitamin E for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2008; (3): CD002854

  81. Kang JH, Cook N, Manson J, et al. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med 2006; 166(22): 2462–8

    Article  PubMed  CAS  Google Scholar 

  82. Kang JH, Cook NR, Manson JE, et al. Vitamin E, vitamin C, beta carotene, and cognitive function among women with or at risk of cardiovascular disease: The Women’s Antioxidant and Cardiovascular Study. Circulation 2009; 119(21): 2772–80

    Article  PubMed  CAS  Google Scholar 

  83. Benton D. Micro-nutrient supplementation and the intelligence of children. Neurosci Biobehav Rev 2001 Jun; 25(4): 297–309

    Article  PubMed  CAS  Google Scholar 

  84. Eilander A, Gera T, Sachdev HS, et al. Multiple micronutrient supplementation for improving cognitive performance in children: systematic review of randomized controlled trials. Am J Clin Nutr 2010 Jan; 91(1): 115–30

    Article  PubMed  CAS  Google Scholar 

  85. Haskell CF, Scholey AB, Jackson PA, et al. Cognitive and mood effects in healthy children during 12 weeks’ supplementation with multi-vitamin/minerals. Br J Nutr 2008 Nov; 100(5): 1086–96

    Article  PubMed  CAS  Google Scholar 

  86. Best C, Neufingerl N, Del Rosso JM, et al. Can multimicronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr Rev 2011; 69(4): 186–204

    Article  PubMed  Google Scholar 

  87. Benton D, Fordy J, Haller J. The impact of long term vitamin supplementation on cognitive functioning. Psychopharmacology 1995; 117: 298–305

    Article  PubMed  CAS  Google Scholar 

  88. Benton D, Haller J, Fordy J. Vitamin supplementation for 1 year improves mood. Neuropsychobiology 1995; 32(2): 98–105

    Article  PubMed  CAS  Google Scholar 

  89. Carroll D, Ring C, Suter M, et al. The effects of an oral multivitamin combination with calcium, magnesium, and zinc on psychological well-being in healthy young male volunteers: a double-blind placebo-controlled trial. Psychopharmacology 2000 Jun; 150(2): 220–5

    Article  PubMed  CAS  Google Scholar 

  90. Cockle SM, Haller J, Kimber S, et al. The influence of multivitamins on cognitive function and mood in the elderly. Aging Ment Health 2000; 4(4): 339–53

    Article  Google Scholar 

  91. Haskell CF, Robertson B, Jones E, et al. Effects of a multi-vitamin/mineral supplement on cognitive function and fatigue during extended multi-tasking. Human Psychopharmacol 2010; 25(6): 448–61

    Article  CAS  Google Scholar 

  92. Kang J, Cook N, Manson J, et al. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr 2008; 88(6): 1602–10

    Article  PubMed  CAS  Google Scholar 

  93. Kennedy DO, Veasey R, Watson A, et al. Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males. Psychopharmacology 2010; 211(1): 55–68

    Article  PubMed  CAS  Google Scholar 

  94. Kennedy DO, Veasey R, Watson A, et al. Vitamins and psychological functioning: a mobile phone assessment of the effects of a B vitamin complex, vitamin C and minerals on cognitive performance and subjective mood and energy. Human Psychopharmacol 2011; 26(4–5): 338–47

    Article  CAS  Google Scholar 

  95. McNeill G, Avenell A, Campbell MK, et al. Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. Nutr J 2007; 6: 10

    Article  PubMed  CAS  Google Scholar 

  96. Schlebusch L, Bosch BA, Polglase G, et al. A double-blind, placebo-controlled, double-centre study of the effects of an oral multivitamin-mineral combination on stress. S Afr Med J 2000 Dec; 90(12): 1216–23

    PubMed  CAS  Google Scholar 

  97. Wolters M, Hickstein M, Flintermann A, et al. Cognitive performance in relation to vitamin status in healthy elderly German women: the effect of 6-month multivitamin supplementation. Prev Med 2005; 41(1): 253–9

    Article  PubMed  Google Scholar 

  98. Raman G, Tatsioni A, Chung M, et al. Heterogeneity and lack of good quality studies limit association between folate, vitamins B-6 and B-12, and cognitive function. J Nutr 2007 Jul; 137(7): 1789–94

    PubMed  CAS  Google Scholar 

  99. McCracken C. Challenges of long-term nutrition intervention studies on cognition: discordance between observational and intervention studies of vitamin B-12 and cognition. Nutr Rev 2010; 68(11): S1 1–5

    Google Scholar 

  100. Benton D. The influence of dietary status on the cognitive performance of children. Mol Nutr Food Res 2010; 54(4): 457–70

    Article  PubMed  CAS  Google Scholar 

  101. Krieg EF, Butler MA. Blood lead, serum homocysteine, and neurobehavioral test performance in the third National Health and Nutrition Examination Survey. Neurotoxicology 2009 Mar; 30(2): 281–9

    Article  PubMed  CAS  Google Scholar 

  102. Elias MF, Robbins MA, Budge MM, et al. Homocysteine, folate, and vitamins B-6 and B-12 blood levels in relation to cognitive performance: The Maine-Syracuse study. Psychosom Med 2006 Jul–Aug; 68(4): 547–54

    Article  PubMed  CAS  Google Scholar 

  103. Benton D. Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr 2008 Aug; 47: 38–50

    Article  PubMed  CAS  Google Scholar 

  104. Benton D, Haller J, Fordy J. The vitamin status of young British adults. Int J Vitam Nutr Res 1997; 67(1): 34–40

    PubMed  CAS  Google Scholar 

  105. Dakshinamurti K, Sharma SK, Bonke D. Influence of vitamin-B on binding-properties of serotonin receptors in the CNS of rats. Klinische Wochenschrift 1990 Jan; 68(2): 142–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Brain, Performance and Nutrition Research Centre has received grant funding for research projects and other academic activities related to vitamins from Bayer Healthcare (Basel), and Pharmaton SA (Lugano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, D.O., Haskell, C.F. Vitamins and Cognition. Drugs 71, 1957–1971 (2011). https://doi.org/10.2165/11594130-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11594130-000000000-00000

Keywords

Navigation