Skip to main content
Log in

Impact of Antiretroviral Therapy on Growth, Body Composition and Metabolism in Pediatric HIV Patients

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Highly active antiretroviral therapy improves survival and growth in children with HIV infection. However, its use can be associated with adverse changes in body composition and metabolism. Bone mineral density can be adversely affected in HIV-positive children due to nutritional compromise or certain anti-retrovirals. HIV-associated lipodystrophy, consisting of redistribution of adipose tissue, insulin resistance, and dyslipidemia, has also been described in children. Pediatric HIV patients may be at greater risk for these problems because of their longer potential lifetime exposure to these agents and because childhood is normally a period of rapid growth and tissue accretion. Healthcare providers for children with HIV infection must be aware of the potential complications associated with HIV antiretrovirals so that their antiviral efficacy can be balanced against their risk for side effects. In this review, we discuss the alterations in childhood growth and body composition that occur in HIV-infected children, and describe the impact of antiretroviral therapy on these outcomes. The problem of HIV-associated lipodystrophy syndrome in children is also discussed. Children with HIV should have their growth and body composition systematically monitored. Antiretroviral regimens should be tailored to optimize adherence and viral suppression while minimizing the potential for adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med 2005 Jan 6; 352(1): 48–62

    Article  PubMed  CAS  Google Scholar 

  2. McKinney Jr RE, Robertson JW. Effect of human immunodeficiency virus infection on the growth of young children. Duke Pediatric AIDS Clinical Trials Unit. J Pediatr 1993 Oct; 123(4): 579–82

    Article  PubMed  Google Scholar 

  3. Arpadi SM. Growth failure in children with HIV infection. J Acquir Immune Defic Syndr 2000 Oct 1; 25 (1 Suppl.): S37–42

    PubMed  Google Scholar 

  4. Miller TL, Evans SJ, Orav EJ, et al. Growth and body composition in children infected with the human immunodeficiency virus-1. Am J Clin Nutr 1993 Apr; 57(4): 588–92

    PubMed  CAS  Google Scholar 

  5. Braddick MR, Kreiss JK, Embree JB, et al. Impact of maternal HIV infection on obstetrical and early neonatal outcome. AIDS 1990 Oct; 4(10): 1001–5

    Article  PubMed  CAS  Google Scholar 

  6. Halsey NA, Boulos R, Holt E, et al. Transmission of HIV-1 infections from mothers to infants in Haiti: impact on childhood mortality and malnutrition. The CDS/JHU AIDS Project Team. JAMA 1990 Oct 24–31; 264(16): 2088–92

    Article  PubMed  CAS  Google Scholar 

  7. Bulterys M, Chao A, Munyemana S, et al. Maternal human immuno-deficiency virus 1 infection and intrauterine growth: a prospective cohort study in Butare, Rwanda. Pediatr Infect Dis J 1994 Feb; 13(2): 94–100

    Article  PubMed  CAS  Google Scholar 

  8. Abrams EJ, Matheson PB, Thomas PA, et al. Neonatal predictors of infection status and early death among 332 infants at risk of HIV-1 infection monitored prospectively from birth. New York City Perinatal HIV Transmission Collaborative Study Group. Pediatrics 1995 Sep; 96 (3 Pt 1): 451–8

    PubMed  CAS  Google Scholar 

  9. Lepage P, Dabis F, Hitimana DG, et al. Perinatal transmission of HIV-1: lack of impact of maternal HIV infection on characteristics of livebirths and on neonatal mortality in Kigali, Rwanda. AIDS 1991 Mar; 5(3): 295–300

    Article  PubMed  CAS  Google Scholar 

  10. Patel D, Bland R, Coovadia H, et al. Breastfeeding, HIV status and weights in South African children: a comparison of HIV-exposed and unexposed children. AIDS 2010; 24: 437–45

    Article  PubMed  Google Scholar 

  11. Temmerman M, Chomba EN, Ndinya-Achola J, et al. Maternal human immunodeficiency virus-1 infection and pregnancy outcome. Obstet Gynecol 1994 Apr; 83(4): 495–501

    Article  PubMed  CAS  Google Scholar 

  12. Kuhn L, Kasonde P, Sinkala M, et al. Does severity of HIV disease in HIV-infected mothers affect mortality and morbidity among their uninfected infants? Clin Infect Dis 2005 Dec 1; 41(11): 1654–61

    Article  PubMed  Google Scholar 

  13. Spinillo A, Iasci A, Dal Maso J, et al. The effect of fetal infection with human immunodeficiency virus type 1 on birthweight and length of gestation. SIGO Study Group of HIV Infection in Pregnancy. Eur J Obstet Gynecol Reprod Biol 1994 Oct; 57(1): 13–7

    Article  PubMed  CAS  Google Scholar 

  14. Taha TE, Dallabetta GA, Canner JK, et al. The effect of human immuno-deficiency virus infection on birthweight, and infant and child mortality in urban Malawi. Int J Epidemiol 1995 Oct; 24(5): 1022–9

    Article  PubMed  CAS  Google Scholar 

  15. Saavedra JM, Henderson RA, Perman JA, et al. Longitudinal assessment of growth in children born to mothers with human immunodeficiency virus infection. Arch Pediatr Adolesc Med 1995 May; 149(5): 497–502

    Article  PubMed  CAS  Google Scholar 

  16. Henderson RA, Miotti PG, Saavedra JM, et al. Longitudinal growth during the first 2 years of life in children born to HIV-infected mothers in Malawi, Africa. Pediatr AIDS HIV Infect 1996 Apr; 7(2): 91–7

    PubMed  CAS  Google Scholar 

  17. Bailey RC, Kamenga MC, Nsuami MJ, et al. Growth of children according to maternal and child HIV, immunological and disease characteristics: a prospective cohort study in Kinshasa, Democratic Republic of Congo. Int J Epidemiol 1999 Jun; 28(3): 532–40

    Article  PubMed  CAS  Google Scholar 

  18. Lepage P, Msellati P, Hitimana DG, et al. Growth of human immuno-deficiency type 1-infected and uninfected children: a prospective cohort study in Kigali, Rwanda, 1988 to 1993. Pediatr Infect Dis J 1996 Jun; 15(6): 479–85

    Article  PubMed  CAS  Google Scholar 

  19. Henderson RA, Saavedra JM, Perman JA, et al. Effect of enteral tube feeding on growth of children with symptomatic human immunodeficiency virus infection. J Pediatr Gastroenterol Nutr 1994 May; 18(4): 429–34

    Article  PubMed  CAS  Google Scholar 

  20. Matarazzo P, Palomba E, Lala R, et al. Growth impairment, IGF I hypo-secretion and thyroid dysfunction in children with perinatal HIV-1 infection. Acta Paediatr 1994 Oct; 83(10): 1029–34

    Article  PubMed  CAS  Google Scholar 

  21. Pollack H, Glasberg H, Lee E, et al. Impaired early growth of infants peri-natally infected with human immunodeficiency virus: correlation with viral load. J Pediatr 1997 Jun; 130(6): 915–22

    Article  PubMed  CAS  Google Scholar 

  22. Newell ML, Borja MC, Peckham C. Height, weight, and growth in children born to mothers with HIV-1 infection in Europe. Pediatrics 2003 Jan; 111(1): e52–60

    Article  PubMed  Google Scholar 

  23. Lepage P, Van de Perre P, Van Vliet G, et al. Clinical and endocrinologic manifestations in perinatally human immunodeficiency virus type 1: infected children aged 5 years or older. Am J Dis Child 1991 Nov; 145(11): 1248–51

    PubMed  CAS  Google Scholar 

  24. Jason J, Gomperts E, Lawrence DN, et al. HIV and hemophilic children’s growth. J Acquir Immune Defic Syndr 1989; 2(3): 277–82

    PubMed  CAS  Google Scholar 

  25. Kaufman FR, Gomperts ED. Growth failure in boys with hemophilia and HIV infection. Am J Pediatr Hematol Oncol 1989; 11(3): 292–4

    PubMed  CAS  Google Scholar 

  26. Gertner JM, Kaufman FR, Donfield SM, et al. Delayed somatic growth and pubertal development in human immunodeficiency virus-infected hemophiliac boys: Hemophilia Growth and Development Study. J Pediatr 1994 Jun; 124(6): 896–902

    Article  PubMed  CAS  Google Scholar 

  27. de Martino M, Tovo PA, Galli L, et al. Puberty in perinatal HIV-1 infection: a multicentre longitudinal study of 212 children. AIDS 2001 Aug 17; 15(12): 1527–34

    Article  PubMed  Google Scholar 

  28. Brogly S, Williams P, Seage G, et al. Antiretroviral treatment in pediatric HIV infection in the United States. JAMA 2005; 293: 2213–20

    Article  PubMed  CAS  Google Scholar 

  29. Arpadi SM, Horlick MN, Wang J, et al. Body composition in prepubertal children with human immunodeficiency virus type 1 infection. Arch Pediatr Adolesc Med 1998 Jul; 152(7): 688–93

    PubMed  CAS  Google Scholar 

  30. Henderson RA, Talusan K, Hutton N, et al. Resting energy expenditure and body composition in children with HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol 1998 Oct 1; 19(2): 150–7

    Article  PubMed  CAS  Google Scholar 

  31. Ellis KJ, Shypailo RJ, Hardin DS, et al. Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res 2001 Sep; 16(9): 1658–64

    Article  PubMed  CAS  Google Scholar 

  32. O’Brien KO, Razavi M, Henderson RA, et al. Bone mineral content in girls perinatally infected with HIV. Am J Clin Nutr 2001 Apr; 73(4): 821–6

    PubMed  Google Scholar 

  33. Chao D, Rutstein RM, Steenhoff AP, et al. Two cases of hypocalcemia secondary to vitamin D deficiency in an urban HIV-positive pediatric population. AIDS 2003 Nov 7; 17(16): 2401–3

    Article  PubMed  Google Scholar 

  34. Gaughan DM, Mofenson LM, Hughes MD, et al. Osteonecrosis of the hip (Legg-Calve-Perthes disease) in human immunodeficiency virus-infected children. Pediatrics 2002 May; 109(5): E74–4

    Article  PubMed  Google Scholar 

  35. Jahoor F, Abramson S, Heird WC. The protein metabolic response to HIV infection in young children. Am J Clin Nutr 2003 Jul; 78(1): 182–9

    PubMed  CAS  Google Scholar 

  36. Miller TL, Orav EJ, Martin SR, et al. Malnutrition and carbohydrate ma-labsorption in children with vertically transmitted human immunodeficiency virus 1 infection. Gastroenterology 1991 May; 100 (5 (1)): 1296–302

    PubMed  CAS  Google Scholar 

  37. Lambl BB, Federman M, Pleskow D, et al. Malabsorption and wasting in AIDS patients with microsporidia and pathogen-negative diarrhea. AIDS 1996 Jun; 10(7): 739–44

    Article  PubMed  CAS  Google Scholar 

  38. Ramos-Soriano AG, Saavedra JM, Wu TC, et al. Enteric pathogens associated with gastrointestinal dysfunction in children with HIV infection. Mol Cell Probes 1996 Apr; 10(2): 67–73

    Article  PubMed  CAS  Google Scholar 

  39. Alfaro MP, Siegel RM, Baker RC, et al. Resting energy expenditure and body composition in pediatric HIV infection. Pediatr AIDS HIV Infect 1995 Oct; 6(5): 276–80

    PubMed  CAS  Google Scholar 

  40. Henderson RA, Talusan K, Hutton N, et al. Whole body protein turnover in children with human immunodeficiency virus (HIV) infection. Nutrition 1999 Mar; 15(3): 189–94

    Article  PubMed  CAS  Google Scholar 

  41. Arnalich F, Martinez P, Hernanz A, et al. Altered concentrations of appetite regulators may contribute to the development and maintenance of HIV-associated wasting. AIDS 1997 Jul 15; 11(9): 1129–34

    Article  PubMed  CAS  Google Scholar 

  42. Papaevangelou V, Papassotiriou I, Vounatsou M, et al. Changes in leptin serum levels in HIV-infected children receiving highly active antiretroviral therapy. Scand J Clin Lab Invest 2007; 67(3): 291–6

    Article  PubMed  CAS  Google Scholar 

  43. Miller TL, Awnetwant EL, Evans S, et al. Gastrostomy tube supplementation for HIV-infected children. Pediatrics 1995 Oct; 96 (4 Pt 1): 696–702

    PubMed  CAS  Google Scholar 

  44. Oostdijk W, Grote FK, Kiezer-Schrama S, et al. Diagnostic approach in children with short stature. Horm Res 2009; 72: 206–17

    Article  PubMed  CAS  Google Scholar 

  45. Kruzich LA, Marquis GS, Carriquiry AL, et al. US youths in the early stages of HIV disease have low intakes of some micronutrients important for optimal immune function [published erratum appears in J Am Diet Assoc 2004 Sep; 104 (9): 1481]. J Am Diet Assoc 2004 Jul; 104(7): 1095–101

    Article  PubMed  Google Scholar 

  46. Stephensen CB, Marquis GS, Douglas SD, et al. Glutathione, glutathione peroxidase, and selenium status in HIV-positive and HIV-negative adolescents and young adults. Am J Clin Nutr 2007 Jan; 85(1): 173–81

    PubMed  CAS  Google Scholar 

  47. Campa A, Shor-Posner G, Indacochea F, et al. Mortality risk in selenium-deficient HIV-positive children. J Acquir Immune Defic Syndr Hum Retrovirol 1999 Apr 15; 20(5): 508–13

    Article  PubMed  CAS  Google Scholar 

  48. Duggan C, Fawzi W. Micronutrients and child health: studies in international nutrition and HIV infection. Nutr Rev 2001 Nov; 59(11): 358–69

    Article  PubMed  CAS  Google Scholar 

  49. Villamor E, Mbise R, Spiegelman D, et al. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics 2002 Jan; 109(1): E6

    Article  PubMed  Google Scholar 

  50. Kupka R, Msamanga GI, Spiegelman D, et al. Selenium levels in relation to morbidity and mortality among children born to HIV-infected mothers. Eur J Clin Nutr 2005 Nov; 59(11): 1250–8

    Article  PubMed  CAS  Google Scholar 

  51. Villamor E, Saathoff E, Bosch RJ, et al. Vitamin supplementation of HIV-infected women improves postnatal child growth. Am J Clin Nutr 2005 Apr; 81(4): 880–8

    PubMed  CAS  Google Scholar 

  52. Myhre JA, Chadwick EG, Yogev R. Failure to thrive in HIV-infected children: incidence, prevalence, and clinical correlates. Pediatr AIDS HIV Infect 1996 Apr; 7(2): 83–90

    PubMed  CAS  Google Scholar 

  53. Schwartz LJ, St Louis Y, Wu R, et al. Endocrine function in children with human immunodeficiency virus infection. Am J Dis Child 1991 Mar; 145(3): 330–3

    PubMed  CAS  Google Scholar 

  54. Geffner ME, Yeh DY, Landaw EM, et al. In vitro insulin-like growth factor-I, growth hormone, and insulin resistance occurs in symptomatic human immunodeficiency virus-1-infected children. Pediatr Res 1993 Jul; 34(1): 66–72

    Article  PubMed  CAS  Google Scholar 

  55. Chantry CJ, Byrd RS, Englund JA, et al. Growth, survival and viral load in symptomatic childhood human immunodeficiency virus infection. Pediatr Infect Dis J 2003 Dec; 22(12): 1033–9

    Article  PubMed  Google Scholar 

  56. Watson DC, Counts DR. Growth hormone deficiency in HIV-infected children following successful treatment with highly active antiretroviral therapy. J Pediatr 2004 Oct; 145(4): 549–51

    Article  PubMed  CAS  Google Scholar 

  57. Weinberg GA, Jospe N. Growth hormone deficiency and HIV infection. J Pediatr 2005/10; 147(4): 559–60

    Article  PubMed  Google Scholar 

  58. Vigano A, Saresella M, Trabattoni D, et al. Growth hormone in T-lympho-cyte thymic and postthymic development: a study in HIV-infected children. J Pediatr 2004 Oct; 145(4): 542–8

    Article  PubMed  CAS  Google Scholar 

  59. Chantry CJ, Frederick MM, Meyer III WA, et al. Endocrine abnormalities and impaired growth in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2007 Jan; 26(1): 53–60

    Article  PubMed  Google Scholar 

  60. Arrington-Sanders R, Hutton N, Siberry GK. Ritonavir-fluticasone interaction causing Cushing syndrome in HIV-infected children and adolescents. Pediatr Infect Dis J 2006 Nov; 25(11): 1044–8

    Article  PubMed  Google Scholar 

  61. de Martino M, Galli L, Chiarelli F, et al. Interleukin-6 release by cultured peripheral blood mononuclear cells inversely correlates with height velocity, bone age, insulin-like growth factor-I, and insulin-like growth factor binding protein-3 serum levels in children with perinatal HIV-1 infection. Clin Immunol 2000 Mar; 94(3): 212–8

    Article  PubMed  Google Scholar 

  62. MacRae VE, Wong SC, Farquharson C, et al. Cytokine actions in growth disorders associated with pediatric chronic inflammatory diseases (review). Int J Mol Med 2006 Dec; 18(6): 1011–8

    PubMed  CAS  Google Scholar 

  63. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006 Dec; 12(12): 1365–71

    Article  PubMed  CAS  Google Scholar 

  64. Amorosa V, Tebas P. Bone disease and HIV infection. Clin Infect Dis 2006; 42: 108–14

    Article  PubMed  Google Scholar 

  65. Gibellini D, Borderi M, De Crignis E, et al. RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men. J Med Virol 2007; 79: 1446–54

    Article  PubMed  CAS  Google Scholar 

  66. McComsey GA, Lo Re III V, O’Riordan M, et al. Effect of reducing the dose of stavudine on body composition, bone density, and markers of mitochondrial toxicity in HIV-infected subjects: a randomized, controlled study. Clin Infect Dis 2008; 46: 1290–6

    Article  PubMed  CAS  Google Scholar 

  67. Patel K, Hernan MA, Williams PL, et al. Long-term effectiveness of highly active antiretroviral therapy on the survival of children and adolescents with HIV infection: a 10-year follow-up study. Clin Infect Dis 2008 Feb 15; 46(4): 507–15

    Article  PubMed  Google Scholar 

  68. Chmait R, Franklin P, Spector SA, et al. Protease inhibitors and decreased birth weight in HIV-infected pregnant women with impaired glucose tolerance. J Perinatol 2002 Jul–Aug; 22(5): 370–3

    Article  PubMed  Google Scholar 

  69. Kowalska A, Niemiec T, El Midaoui A, et al. Effect of antiretroviral therapy on pregnancy outcome in HIV-1 positive women. Med Wieku Rozwoj 2003 Oct–Dec; 7 (4 Pt 1): 459–68

    PubMed  Google Scholar 

  70. Briand N, Le Coeur S, Traisathit P, et al. Growth of human immuno-deficiency virus-uninfected children exposed to perinatal zidovudine for the prevention of mother-to-child human immunodeficiency virus transmission. Pediatr Infect Dis J 2006 Apr; 25(4): 325–32

    Article  PubMed  Google Scholar 

  71. Alimenti A, Burdge DR, Ogilvie GS, et al. Lactic acidemia in human immunodeficiency virus-uninfected infants exposed to perinatal antiretroviral therapy. Pediatr Infect Dis J 2003 Sep; 22(9): 782–9

    Article  PubMed  Google Scholar 

  72. Dreimane D, Nielsen K, Deveikis A, et al. Effect of protease inhibitors combined with standard antiretroviral therapy on linear growth and weight gain in human immunodeficiency virus type 1-infected children. Pediatr Infect Dis J 2001 Mar; 20(3): 315–6

    Article  PubMed  CAS  Google Scholar 

  73. Verweel G, van Rossum AM, Hartwig NG, et al. Treatment with highly active antiretroviral therapy in human immunodeficiency virus type 1-infected children is associated with a sustained effect on growth. Pediatrics 2002 Feb; 109(2): E25

    Article  PubMed  Google Scholar 

  74. Miller TL, Mawn BE, Orav EJ, et al. The effect of protease inhibitor therapy on growth and body composition in human immunodeficiency virus type 1-infected children. Pediatrics 2001 May; 107(5): E77

    Article  PubMed  CAS  Google Scholar 

  75. Wamalwa DC, Farquhar C, Obimbo EM, et al. Early response to highly active antiretroviral therapy in HIV-1-infected Kenyan children. J Acquir Immune Defic Syndr 2007 Jul 1; 45(3): 311–7

    PubMed  CAS  Google Scholar 

  76. Hardin DS, Ellis KJ, Rice J, et al. Protease inhibitor therapy improves protein catabolism in prepubertal children with HIV infection. J Pediatr Endocrinol 2004 Mar; 17(3): 321–5

    Article  CAS  Google Scholar 

  77. Haroun D, Wells JC, Lau C, et al. Assessment of obesity status in outpatients from three disease states. Acta Paediatr 2006 Aug; 95(8): 970–4

    Article  PubMed  Google Scholar 

  78. Kruzich LA, Marquis GS, Wilson CM, et al. HIV-infected US youth are at high risk of obesity and poor diet quality: a challenge for improving short- and long-term health outcomes. J Am Diet Assoc 2004 Oct; 104(10): 1554–60

    Article  PubMed  Google Scholar 

  79. Mora S, Sala N, Bricalli D, et al. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS 2001 Sep 28; 15(14): 1823–9

    Article  PubMed  CAS  Google Scholar 

  80. Badiou S, De Boever CM, Terrier N, et al. Is tenofovir involved in hypophosphatemia and decrease of tubular phosphate reabsorption in HIV-positive adults? J Infect 2006 May; 52(5): 335–8

    Article  PubMed  Google Scholar 

  81. Earle KE, Seneviratne T, Shaker J, et al. Fanconi’s syndrome in HIV+ adults: report of three cases and literature review. J Bone Miner Res 2004 May; 19(5): 714–21

    Article  PubMed  Google Scholar 

  82. Huang JS, Rietschel P, Hadigan CM, et al. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS 2001 May 25; 15(8): 975–82

    Article  PubMed  CAS  Google Scholar 

  83. Tan BM, Nelson Jr RP, James-Yarish M, et al. Bone metabolism in children with human immunodeficiency virus infection receiving highly active antiretroviral therapy including a protease inhibitor. J Pediatr 2001 Sep; 139(3): 447–51

    Article  PubMed  CAS  Google Scholar 

  84. Rietschel P, Hadigan C, Corcoran C, et al. Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J Clin Endocrinol Metab 2001 Feb; 86(2): 504–10

    Article  PubMed  CAS  Google Scholar 

  85. Koutkia P, Meininger G, Canavan B, et al. Metabolic regulation of growth hormone by free fatty acids, somatostatin, and ghrelin in HIV-lipodystrophy. Am J Physiol Endocrinol Metab 2004 Feb; 286(2): E296–303

    Article  PubMed  CAS  Google Scholar 

  86. Koutkia P, Canavan B, Breu J, et al. Growth hormone (GH) responses to GH-releasing hormone-arginine testing in human immunodeficiency virus lipodystrophy. J Clin Endocrinol Metab 2005 Jan; 90(1): 32–8

    Article  PubMed  CAS  Google Scholar 

  87. Koutkia P, Eaton K, You SM, et al. Growth hormone secretion among HIV infected patients: effects of gender, race and fat distribution. AIDS 2006 Apr 4; 20(6): 855–62

    Article  PubMed  CAS  Google Scholar 

  88. Vigano A, Mora S, Brambilla P, et al. Impaired growth hormone secretion correlates with visceral adiposity in highly active antiretroviral treated HIV-infected adolescents. AIDS 2003 Jul 4; 17(10): 1435–41

    Article  PubMed  CAS  Google Scholar 

  89. Kim RJ, Carlow DC, Rutstein JH, et al. Hypoadiponectinemia, dyslipidemia, and impaired growth in children with HIV-associated facial lipoatrophy. J Pediatr Endocrinol Metab 2007 Jan; 20(1): 65–74

    Article  PubMed  CAS  Google Scholar 

  90. Silva M, Skolnik PR, Gorbach SL, et al. The effect of protease inhibitors on weight and body composition in HIV-infected patients. AIDS 1998 Sep 10; 12(13): 1645–51

    Article  PubMed  CAS  Google Scholar 

  91. Carr A, Samaras K, Chisholm DJ, et al. Abnormal fat distribution and use of protease inhibitors [letter]. Lancet 1998 Jun 6; 351(9117): 1736

    Article  PubMed  CAS  Google Scholar 

  92. Jaquet D, Levine M, Ortega-Rodriguez E, et al. Clinical and metabolic presentation of the lipodystrophic syndrome in HIV-infected children. AIDS 2000 Sep 29; 14(14): 2123–8

    Article  PubMed  CAS  Google Scholar 

  93. Arpadi SM, Cuff PA, Horlick M, et al. Lipodystrophy in HIV-infected children is associated with high viral load and low CD4+ -lymphocyte count and CD4+ -lymphocyte percentage at baseline and use of protease inhibitors and stavudine. J Acquir Immune Defic Syndr 2001 May 1; 27(1): 30–4

    PubMed  CAS  Google Scholar 

  94. Vigano A, Mora S, Testolin C, et a1. Increased lipodystrophy is associated with increased exposure to highly active antiretroviral therapy in HIV-infected children. J Acquir Immune Defic Syndr 2003 Apr 15; 32(5): 482–9

    Article  PubMed  Google Scholar 

  95. Funk E, Bressler FJ, Brissett AE. Contemporary surgical management of HIV-associated facial lipoatrophy. Otolaryngol Head Neck Surg 2006 Jun; 134(6): 1015–22

    Article  PubMed  CAS  Google Scholar 

  96. Vigouroux C, Maachi M, Nguyen TH, et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 2003 Jul 4; 17(10): 1503–11

    Article  PubMed  CAS  Google Scholar 

  97. Dzwonek AB, Novelli V, Schwenk A. Serum leptin concentrations and fat redistribution in HIV-1-infected children on highly active antiretroviral therapy. HIV Med 2007 Oct; 8(7): 433–8

    Article  PubMed  CAS  Google Scholar 

  98. Kosmiski LA, Bacchetti P, Kotler DP, et al. Relationship of fat distribution with adipokines in HIV infection. J Clin Endocrinol Metab 2008 Oct 16; 93(1): 216–24

    Article  PubMed  CAS  Google Scholar 

  99. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2006; 2: 367–73

    Article  PubMed  Google Scholar 

  100. Taylor P, Worrell C, Steinberg SM, et al. Natural history of lipid abnormalities and fat redistribution among human immunodeficiency virus-infected children receiving long-term, protease inhibitor-containing, highly active antiretroviral therapy regimens. Pediatrics 2004 Aug; 114(2): e235–42

    Article  PubMed  Google Scholar 

  101. Verkauskiene R, Dollfus C, Levine M, et al. Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr Res 2006 Aug; 60(2): 225–30

    Article  PubMed  CAS  Google Scholar 

  102. Riddler SA, Smit E, Cole SR, et al. Impact of HIV infection and HAART on serum lipids in men. JAMA 2003 Jun 11; 289(22): 2978–82

    Article  PubMed  CAS  Google Scholar 

  103. Stary HC. Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis. Am J Clin Nutr 2000 Nov; 72 (5 Suppl.): 1297–306S

    Google Scholar 

  104. Holmberg SD, Moorman AC, Williamson JM, et al. Protease inhibitors and cardiovascular outcomes in patients with HIV-1. Lancet 2002 Nov 30; 360(9347): 1747–8

    Article  PubMed  CAS  Google Scholar 

  105. Holmberg SD, Moorman AC, Greenberg AE. Trends in rates of myocardial infarction among patients with HIV. N Engl J Med 2004 Feb 12; 350(7): 730–2

    Article  PubMed  CAS  Google Scholar 

  106. Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 2003 Nov 20; 349(21): 1993–2003

    Article  PubMed  Google Scholar 

  107. Bockhorst JL, Ksseiry I, Toye M, et al. Evidence of human immunodeficiency virus-associated lipodystrophy syndrome in children treated with protease inhibitors. Pediatr Infect Dis J 2003 May; 22(5): 463–5

    PubMed  Google Scholar 

  108. Amaya RA, Kozinetz CA, McMeans A, et al. Lipodystrophy syndrome in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2002 May; 21(5): 405–10

    Article  PubMed  Google Scholar 

  109. Rosso R, Parodi A, d’Annunzio G, et al. Evaluation of insulin resistance in a cohort of HIV-infected youth. Eur J Endocrinol 2007 Nov; 157(5): 655–9

    Article  PubMed  CAS  Google Scholar 

  110. Bitnun A, Sochett E, Dick PT, et al. Insulin sensitivity and beta-cell function in protease inhibitor-treated and -naive human immunodeficiency virus-infected children. J Clin Endocrinol Metab 2005 Jan; 90(1): 168–74

    Article  PubMed  CAS  Google Scholar 

  111. Justman JE, Benning L, Danoff A, et al. Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr 2003 Mar 1; 32(3): 298–302

    Article  PubMed  CAS  Google Scholar 

  112. Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 2005 May 23; 165(10): 1179–84

    Article  PubMed  Google Scholar 

  113. Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 2004 Feb 7; 363(9407): 429–38

    Article  PubMed  CAS  Google Scholar 

  114. Hadigan C, Yawetz S, Thomas A, et al. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Intern Med 2004 May 18; 140(10): 786–94

    PubMed  CAS  Google Scholar 

  115. van Wijk JP, de Koning EJ, Cabezas MC, et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann Intern Med 2005 Sep 6; 143(5): 337–46

    PubMed  Google Scholar 

  116. Hadigan C, Corcoran C, Basgoz N, et al. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. JAMA 2000 Jul 26; 284(4): 472–7

    Article  PubMed  CAS  Google Scholar 

  117. Brinkman K, Smeitink JA, Romijn JA, et al. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 1999 Sep 25; 354(9184): 1112–5

    Article  PubMed  CAS  Google Scholar 

  118. Wohl DA, McComsey G, Tebas P, et al. Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin Infect Dis 2006 Sep 1; 43(5): 645–53

    Article  PubMed  CAS  Google Scholar 

  119. Lichtenstein KA, Ward DJ, Moorman AC, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS 2001 Jul 27; 15(11): 1389–98

    Article  PubMed  CAS  Google Scholar 

  120. Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 2000 Jun; 22(6): 685–708

    Article  PubMed  CAS  Google Scholar 

  121. Begriche K, Igoudjil A, Pessayre D, et al. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006 Feb; 6(1): 1–28

    Article  PubMed  CAS  Google Scholar 

  122. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006 Dec; 55Suppl. 2: S9–15

    Article  PubMed  CAS  Google Scholar 

  123. Jan V, Cervera P, Maachi M, et al. Altered fat differentiation and adipocy-tokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther 2004 Aug; 9(4): 555–64

    PubMed  CAS  Google Scholar 

  124. Kannisto K, Sutinen J, Korsheninnikova E, et al. Expression of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma co-activator 1, IL-6 and CD45 in subcutaneous adipose tissue in lipodystrophy associated with highly active antiretroviral therapy. AIDS 2003 Aug 15; 17(12): 1753–62

    Article  PubMed  CAS  Google Scholar 

  125. Lindegaard B, Hansen AB, Pilegaard H, et al. Adipose tissue expression of IL-18 and HIV-associated lipodystrophy. AIDS 2004 Sep 24; 18(14): 1956–8

    Article  PubMed  Google Scholar 

  126. Shikuma CM, Hu N, Milne C, et al. Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV-infected individuals with peripheral lipoatrophy. AIDS 2001 Sep 28; 15(14): 1801–9

    Article  PubMed  CAS  Google Scholar 

  127. McComsey GA, Paulsen DM, Lonergan JT, et al. Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 2005 Jan 3; 19(1): 15–23

    Article  PubMed  CAS  Google Scholar 

  128. Pace CS, Martin AM, Hammond EL, et al. Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir Ther 2003 Aug; 8(4): 323–31

    PubMed  CAS  Google Scholar 

  129. Dube MP, Parker RA, Tebas P, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS 2005 Nov 4; 19(16): 1807–18

    Article  PubMed  CAS  Google Scholar 

  130. van der Valk M, Bisschop PH, Romijn JA, et al. Lipodystrophy in HIV-1-positive patients is associated with insulin resistance in multiple metabolic pathways. AIDS 2001 Nov 9; 15(16): 2093–100

    Article  PubMed  Google Scholar 

  131. Adler-Wailes DC, Liu H, Ahmad F, et al. Effects of the human immuno-deficiency virus-protease inhibitor, ritonavir, on basal and catecholamine-stimulated lipolysis. J Clin Endocrinol Metab 2005 June 1; 90(6): 3251–61

    Article  PubMed  CAS  Google Scholar 

  132. Grigem S, Fischer-Posovszky P, Debatin KM, et al. The effect of the HIV protease inhibitor ritonavir on proliferation, differentiation, lipogenesis, gene expression and apoptosis of human preadipocytes and adipocytes. Horm Metab Res 2005 Oct; 37(10): 602–9

    Article  PubMed  CAS  Google Scholar 

  133. Lagathu C, Bastard JP, Auclair M, et al. Antiretroviral drugs with adverse effects on adipocyte lipid metabolism and survival alter the expression and secretion of proinflammatory cytokines and adiponectin in vitro. Antivir Ther 2004 Dec; 9(6): 911–20

    PubMed  Google Scholar 

  134. Mynarcik DC, McNurlan MA, Steigbigel RT, et al. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J Acquir Immune Defic Syndr 2000 Dec 1; 25(4): 312–21

    Article  PubMed  CAS  Google Scholar 

  135. Lihn AS, Richelsen B, Pedersen SB, et al. Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am J Physiol Endocrinol Metab 2003 Nov; 285(5): E1072–80

    PubMed  CAS  Google Scholar 

  136. Soria A, Lazzarin A. Antiretroviral treatment strategies and immune recon-stitution in treatment-naive HIV-infected patients with advanced disease. J Acquir Immune Defic Syndr 2007; 46Suppl. 1: S19–30

    Article  PubMed  Google Scholar 

  137. Simoni JM, Montgomery A, Martin E, et al. Adherence to antiretroviral therapy for pediatric HIV infection: a qualitative systematic review with recommendations for research and clinical management. Pediatrics 2007; 119: e1371–83

    Article  PubMed  Google Scholar 

  138. Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children. Guidelines for the use of antiretroviral agents in pediatric HIV infection, 2009 Feb 23 [online]. Available from URL: http://aidsinfo.nih.gov/ContentFiles/PediatricGuidelines.pdf. [Accessed 2010 Mar 12]

  139. Vigano A, Aldrovandi GM, Giacomet V, et al. Improvement in dyslipidaemia after switching stavudine to tenofovir and replacing protease inhibitors with efavirenz in HIV-infected children. Antivir Ther 2005; 10: 917–24

    PubMed  CAS  Google Scholar 

  140. McComsey G, Bhumbra N, Ma JF, et al. Impact of protease inhibitor substitution with efavirenz in HIV-infected children: results of the First Pediatric Switch Study. Pediatrics 2003 Mar; 111(3): e275–81

    Article  PubMed  Google Scholar 

  141. Moyle G. Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir Ther 2005; 10Suppl. 2: M47–52

    PubMed  CAS  Google Scholar 

  142. Hetherington S, McGuirk S, Powell G, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 2001; 23: 1603–14

    Article  PubMed  CAS  Google Scholar 

  143. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359: 727–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Roy Kim is supported by NIH grant K12 DK63682 and has no conflicts of interest to report. Richard Rutstein has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, R.J., Rutstein, R.M. Impact of Antiretroviral Therapy on Growth, Body Composition and Metabolism in Pediatric HIV Patients. Pediatr-Drugs 12, 187–199 (2010). https://doi.org/10.2165/11532520-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11532520-000000000-00000

Keywords

Navigation