Skip to main content
Log in

Sphingosine-1-Phosphate Signaling and the Skin

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Sphingolipids have long been viewed as rather passive structural components of cellular membranes. More recently, it has become evident that metabolism of sphingomyelin yields several lipid mediators that evoke diverse and specific responses in different cell types. One sphingomyelin derivate, sphingosine-1-phosphate (S1P), has attracted particular attention for its effect on epidermal cells, which differs from those on most other cell types. S1P inhibits keratinocyte proliferation and induces keratinocyte differentiation and migration, suggesting a role for S1P in the re-epithelialization of wounds. The migratory response involves the phosphorylation and activation of Smad3. In epithelial tumors, S1P signaling has been linked with potential oncogenic effects, but has also been found to inhibit metastasis in a mouse melanoma model. S1P promotes endothelial cell survival, acts as a chemoattractant for vascular cells, and exerts a protective effect on the endothelial barrier. Conversely, S1P receptor knockout leads to embryonic lethality mainly due to impaired vascular maturation. S1P presumably modulates peripheral T-lymphocyte levels by stimulating their egress from lymphoid organs rather than by promoting T-cell proliferation. The S1P analog FTY720 (fingolimod) acts as a functional antagonist by inhibiting lymphocyte egress, and thus holds great promise as an immunosuppressant drug for the prevention of allograft rejection and treatment of T-lymphocyte-driven inflammatory skin diseases, such as lupus erythematosus, psoriasis, and atopic dermatitis. Topical use of S1P and other sphingosine compounds is also under investigation, particularly for the treatment of acne vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwab SR, Pereira JP, Matloubian M, et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005; 309: 1735–9

    Article  PubMed  CAS  Google Scholar 

  2. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993; 365:557–60

    Article  PubMed  CAS  Google Scholar 

  3. Edsall LC, Pirianov GG, Spiegel S. Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 1997; 17: 6952–60

    PubMed  CAS  Google Scholar 

  4. Mazurek N, Megidish T, Hakomori S, et al. Regulatory effect of phorbol esters on sphingosine kinase in BALB/C 3T3 fibroblasts (variant A31): demonstration of cell type-specific response: a preliminary note. Biochem Biophys Res Commun 1994; 198: 1–9

    Article  PubMed  CAS  Google Scholar 

  5. Kleuser B, Cuvillier O, Spiegel S. 1alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase. Cancer Res 1998; 58: 1817–24

    PubMed  CAS  Google Scholar 

  6. Alemany R, Meyer zu Heringdorf D, van Koppen CJ, et al. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J Biol Chem 1999; 274: 3994–9

    Article  PubMed  CAS  Google Scholar 

  7. Melendez A, Floto RA, Cameron AJ, et al. A molecular switch changes the signalling pathway used by the Fc gamma RI antibody receptor to mobilise calcium. Curr Biol 1998; 8: 210–21

    Article  PubMed  CAS  Google Scholar 

  8. Zhang H, Desai NN, Olivera A, et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 1991; 114: 155–67

    Article  PubMed  CAS  Google Scholar 

  9. Lee MJ, Van Brocklyn JR, Thangada S, et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998; 279: 1552–5

    Article  PubMed  CAS  Google Scholar 

  10. Pyne S. Cellular signaling by sphingosine and sphingosine 1-phosphate: their opposing roles in apoptosis. Subcell Biochem 2002; 36: 245–68

    Article  PubMed  CAS  Google Scholar 

  11. Hla T. Signaling and biological actions of sphingosine 1-phosphate. Pharmacol Res 2003; 47: 401–7

    Article  PubMed  CAS  Google Scholar 

  12. Waeber C, Blondeau N, Salomone S. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 2004; 17: 365–82

    Article  PubMed  CAS  Google Scholar 

  13. Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427: 355–60

    Article  PubMed  CAS  Google Scholar 

  14. Graler MH, Bernhardt G, Lipp M. A lymphoid tissue-specific receptor, EDG6, with potential immune modulatory functions mediated by extracellular lysophospholipids. Curr Top Microbiol Immunol 1999; 246: 131–6

    Article  PubMed  CAS  Google Scholar 

  15. Terai K, Soga T, Takahashi M, et al. Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience 2003; 116: 1053–62

    Article  PubMed  CAS  Google Scholar 

  16. Takuwa Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim Biophys Acta 2002; 1582: 112–20

    Article  PubMed  CAS  Google Scholar 

  17. Taha TA, Argraves KM, Obeid LM. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 2004; 1682: 48–55

    Article  PubMed  CAS  Google Scholar 

  18. Davaille J, Gallois C, Habib A, et al. Antiproliferative properties of sphingosine 1-phosphate in human hepatic myofibroblasts: a cyclooxygenase-2 mediated pathway. J Biol Chem 2000; 275: 34628–33

    Article  PubMed  CAS  Google Scholar 

  19. Morales-Ruiz M, Lee MJ, Zollner S, et al.Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem 2001; 276: 19672–7

    Article  Google Scholar 

  20. Lee MJ, Thangada S, Claffey KP, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99: 301–12

    Article  PubMed  CAS  Google Scholar 

  21. Paik JH, Chae S, Lee MJ, et al. Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho- dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 2001; 276: 11830–7

    Article  PubMed  CAS  Google Scholar 

  22. Lee H, Goetzl EJ, An S. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol 2000; 278: C612–8

    PubMed  CAS  Google Scholar 

  23. Igarashi J, Bernier SG, Michel T. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase: differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J Biol Chem 2001; 276: 12420–6

    Article  PubMed  CAS  Google Scholar 

  24. di Villa BiancaR, Sorrentino R, Imbimbo C, et al. Sphingosine 1-phosphate induces endothelial nitric-oxide synthase activation through phosphorylation in human corpus cavernosum. J Pharmacol Exp Ther 2006; 316: 703–8

    Google Scholar 

  25. Coussin F, Scott RH, Wise A, et al. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res 2002; 91: 151–7

    Article  PubMed  CAS  Google Scholar 

  26. Ohmori T, Yatomi Y, Osada M, et al. Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc Res 2003; 58: 170–7

    Article  PubMed  CAS  Google Scholar 

  27. Tosaka M, Okajima F, Hashiba Y, et al. Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: possible role in pathogenesis of cerebral vasospasm. Stroke 2001; 32: 2913–9

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000; 106: 951–61

    Article  PubMed  CAS  Google Scholar 

  29. Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 2003; 102: 3665–7

    Article  PubMed  CAS  Google Scholar 

  30. Kono M, Mi Y, Liu Y, et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 2004; 279: 29367–73

    Article  PubMed  CAS  Google Scholar 

  31. LaMontagne K, Littlewood-Evans A, Schnell C, et al. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 2006; 66: 221–31

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez T, Estrada-Hernandez T, Paik JH, et al. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 2003; 278: 47281–90

    Article  PubMed  CAS  Google Scholar 

  33. Schaphorst KL, Chiang E, Jacobs KN, et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003; 285: L258–67

    PubMed  CAS  Google Scholar 

  34. Dudek SM, Jacobson JR, Chiang ET, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 2004; 279: 24692–700

    Article  PubMed  CAS  Google Scholar 

  35. McVerry BJ, Garcia JG. Endothelial cell barrier regulation by sphingosine 1-phosphate. J Cell Biochem 2004; 92: 1075–85

    Article  PubMed  CAS  Google Scholar 

  36. Finigan JH, Dudek SM, Singleton PA, et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 2005; 280: 17286–93

    Article  PubMed  CAS  Google Scholar 

  37. Jin ZQ, Zhou HZ, Zhu P, et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am J Physiol Heart Circ Physiol 2002; 282: H1970–7

    PubMed  CAS  Google Scholar 

  38. Graler MH, Goetzl EJ. Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 2002; 1582: 168–74

    Article  PubMed  CAS  Google Scholar 

  39. Allende ML, Dreier JL, Mandala S, et al. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 2004; 279: 15396–401

    Article  PubMed  CAS  Google Scholar 

  40. Graler MH, Huang MC, Watson S, et al. Immunological effects of transgenic constitutive expression of the type 1 sphingosine 1-phosphate receptor by mouse lymphocytes. J Immunol 2005; 174: 1997–2003

    PubMed  Google Scholar 

  41. Brinkmann V, Davis MD, Heise CE, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002; 277: 21453–7

    Article  PubMed  CAS  Google Scholar 

  42. Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 2002; 296: 346–9

    Article  PubMed  CAS  Google Scholar 

  43. Albert R, Hinterding K, Brinkmann V, et al. Novel immunomodulator FTY720 is phosphorylated in rats and humans to form a single stereoisomer. Identification, chemical proof, and biological characterization of the biologically active species and its enantiomer. J Med Chem 2005; 48: 5373–7

    CAS  Google Scholar 

  44. Kharel Y, Lee S, Snyder AH, et al. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J Biol Chem 2005; 280: 36865–72

    Article  PubMed  CAS  Google Scholar 

  45. Allende ML, Sasaki T, Kawai H, et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 2004; 279: 52487–92

    Article  PubMed  CAS  Google Scholar 

  46. Pinschewer DD, Ochsenbein AF, Odermatt B, et al. FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol 2000; 164: 5761–70

    PubMed  CAS  Google Scholar 

  47. Brinkmann V, Chen S, Feng L, et al. FTY720 alters lymphocyte homing and protects allografts without inducing general immunosuppression. Transplant Proc 2001; 33: 530–1

    Article  PubMed  CAS  Google Scholar 

  48. Graler MH, Goetzl EJ. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. Faseb J 2004; 18: 551–3

    PubMed  CAS  Google Scholar 

  49. Wei SH, Rosen H, Matheu MP, et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 2005; 6: 1228–35

    Article  PubMed  CAS  Google Scholar 

  50. Renkl A, Berod L, Mockenhaupt M, et al. Distinct effects of sphingosine-1-phosphate, lysophosphatidic acid and histamine in human and mouse dendritic cells. Int J Mol Med 2004; 13: 203–9

    PubMed  CAS  Google Scholar 

  51. Czeloth N, Bernhardt G, Hofmann F, et al. Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 2005; 175: 2960–7

    PubMed  CAS  Google Scholar 

  52. Eigenbrod S, Derwand R, Jakl V, et al. Sphingosine kinase and sphingosine-1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells. Immunol Invest 2006; 35: 149–65

    Article  PubMed  CAS  Google Scholar 

  53. Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277: 17255–62

    Article  PubMed  CAS  Google Scholar 

  54. Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 1996; 380: 634–6

    Article  PubMed  CAS  Google Scholar 

  55. Jolly PS, Bektas M, Olivera A, et al. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 2004; 199: 959–70

    Article  PubMed  CAS  Google Scholar 

  56. Olivera A, Rivera J. Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J Immunol 2005; 174: 1153–8

    PubMed  CAS  Google Scholar 

  57. Roviezzo F, Del Galdo F, Abbate G, et al. Human eosinophil chemotaxis and selective in vivo recruitment by sphingosine 1-phosphate. Proc Natl Acad Sci U S A 2004; 101: 11170–5

    Article  PubMed  CAS  Google Scholar 

  58. Sawicka E, Zuany-Amorim C, Manlius C, et al. Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol 2003; 171: 6206–14

    PubMed  CAS  Google Scholar 

  59. Yanagawa Y, Hoshino Y, Chiba K. The significance of timing of FTY720 administration on the immunosuppressive effect to prolong rat skin allograft survival. Int J Immunopharmacol 2000; 22: 597–602

    Article  PubMed  CAS  Google Scholar 

  60. Chiba K, Hoshino Y, Suzuki C, et al. FTY720, a novel immunosuppressant possessing unique mechanisms: I. Prolongation of skin allograft survival and synergistic effect in combination with cyclosporine in rats. Transplant Proc 1996; 28: 1056–9

    PubMed  CAS  Google Scholar 

  61. Nikolova Z, Hof A, Baumlin Y, et al. Combined FTY720/cyclosporine A treatment promotes graft survival and lowers the peripheral lymphocyte count in DA to Lewis heart and skin transplantation models. Transpl Immunol 2001; 8: 267–77

    Article  PubMed  CAS  Google Scholar 

  62. Lima RS, Nogueira-Martins MF, Silva Jr HT, et al. FTY720 treatment prolongs skin graft survival in a completely incompatible strain combination. Transplant Proc 2004; 36: 1015–7

    Article  PubMed  CAS  Google Scholar 

  63. Chiba K, Hoshino Y, Ohtsuki M, et al. Immunosuppressive activity of FTY720, sphingosine 1-phosphate receptor agonist: I. Prevention of allograft rejection in rats and dogs by FTY720 and FTY720-phosphate. Transplant Proc 2005; 37: 102–6

    Article  PubMed  CAS  Google Scholar 

  64. Kohno T, Tsuji T, Hirayama K, et al. A novel immunomodulator, FTY720, prevents spontaneous dermatitis in NC/Nga mice. Biol Pharm Bull 2004; 27: 1392–6

    Article  PubMed  CAS  Google Scholar 

  65. Alperovich G, Rama I, Lloberas N, et al. New immunosuppressor strategies in the treatment of murine lupus nephritis. Lupus 2007; 16: 18–24

    Article  PubMed  CAS  Google Scholar 

  66. Okazaki H, Hirata D, Kamimura T, et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol 2002; 29: 707–16

    PubMed  CAS  Google Scholar 

  67. Castillo SS, Teegarden D. Sphingosine-1-phosphate inhibition of apoptosis requires mitogen-activated protein kinase phosphatase-1 in mouse fibroblast C3H10T 1/2 cells. J Nutr 2003; 133: 3343–9

    PubMed  CAS  Google Scholar 

  68. Kiss Z, Mukherjee JJ. Phosphocholine and sphingosine-1-phosphate synergistically stimulate DNA synthesis by a MAP kinase-dependent mechanism. FEBS Lett 1997; 412: 197–200

    Article  PubMed  CAS  Google Scholar 

  69. Olivera A, Kohama T, Edsall L, et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 1999; 147: 545–58

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Q, Peyruchaud O, French KJ, et al. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood 1999; 93: 2984–90

    PubMed  CAS  Google Scholar 

  71. Sato M, Markiewicz M, Yamanaka M, et al. Modulation of transforming growth factor-beta (TGF-beta) signaling by endogenous sphingolipid mediators. J Biol Chem 2003; 278: 9276–82

    Article  PubMed  CAS  Google Scholar 

  72. Yamanaka M, Shegogue D, Pei H, et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem 2004; 279: 53994–4001

    Article  PubMed  CAS  Google Scholar 

  73. Xin C, Ren S, Eberhardt W, et al. The immunomodulator FTY720 and its phosphorylated derivative activate the Smad signalling cascade and upregulate connective tissue growth factor and collagen type IV expression in renal mesangial cells. Br J Pharmacol 2006; 147: 164–74

    Article  PubMed  CAS  Google Scholar 

  74. Hamanaka S, Hara M, Nishio H, et al. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol 2002; 119: 416–23

    Article  PubMed  CAS  Google Scholar 

  75. Behne M, Uchida Y, Seki T, et al. Omega-hydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J Invest Dermatol 2000; 114: 185–92

    Article  PubMed  CAS  Google Scholar 

  76. Bektas M, Orfanos CE, Geilen CC. Different vitamin D analogues induce sphingomyelin hydrolysis and apoptosis in the human keratinocyte cell line HaCaT. Cell Mol Biol 2000; 46: 111–9

    PubMed  CAS  Google Scholar 

  77. Vogler R, Sauer B, Kim DS, et al. Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. J Invest Dermatol 2003; 120: 693–700

    Article  PubMed  CAS  Google Scholar 

  78. Moses HL, Yang EY, Pietenpol JA. TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 1990; 63: 245–7

    Article  PubMed  CAS  Google Scholar 

  79. Sauer B, Vogler R, von Wenckstern H, et al. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 2004; 279: 38471–9

    Article  PubMed  CAS  Google Scholar 

  80. Manggau M, Kim DS, Ruwisch L, et al. 1alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate. J Invest Dermatol 2001; 117: 1241–9

    Article  PubMed  CAS  Google Scholar 

  81. Kim DS, Kim SY, Kleuser B, et al. Sphingosine-1-phosphate inhibits human keratinocyte proliferation via Akt/protein kinase B inactivation. Cell Signal 2004; 16: 89–95

    Article  PubMed  CAS  Google Scholar 

  82. Marcinkowska E, Wiedlocha A, Radzikowski C. 1,25-dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem Biophys Res Commun 1997; 241: 419–26

    Article  PubMed  CAS  Google Scholar 

  83. Xia P, Gamble JR, Wang L, et al. An oncogenic role of sphingosine kinase. Curr Biol 2000; 10: 1527–30

    Article  PubMed  CAS  Google Scholar 

  84. Kawamori T, Osta W, Johnson KR, et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. Faseb J 2006; 20: 386–8

    PubMed  CAS  Google Scholar 

  85. French KJ, Schrecengost RS, Lee BD, et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–9

    PubMed  CAS  Google Scholar 

  86. Van Brocklyn JR, Jackson CA, Pearl DK, et al. Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 2005; 64: 695–705

    Article  PubMed  Google Scholar 

  87. Yamaguchi H, Kitayama J, Takuwa N, et al. Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. Biochem J 2003; 374: 715–22

    Article  PubMed  CAS  Google Scholar 

  88. Arikawa K, Takuwa N, Yamaguchi H, et al. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor: requirement of inhibition of cellular RAC activity. J Biol Chem 2003; 278: 32841–51

    Article  PubMed  CAS  Google Scholar 

  89. Birt DF, Merrill Jr AH, Barnett T, et al. Inhibition of skin carcinomas but not papillomas by sphingosine, N-methylsphingosine, and N-acetylsphingosine. Nutr Cancer 1998; 31: 119–26

    Article  PubMed  CAS  Google Scholar 

  90. Visentin B, Vekich JA, Sibbald BJ, et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 2006; 9: 225–38

    Article  PubMed  CAS  Google Scholar 

  91. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999; 397: 530–4

    Article  PubMed  CAS  Google Scholar 

  92. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8: 128–35

    Article  PubMed  CAS  Google Scholar 

  93. Tanaka T, Takahara S, Hatori M, et al. A novel immunosuppressive drug, FTY720, prevents the cancer progression induced by cyclosporine. Cancer Lett 2002; 181: 165–71

    Article  PubMed  CAS  Google Scholar 

  94. Schmid G, Guba M, Ischenko I, et al. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1. J Cell Biochem 2007; 101: 259–70

    Article  PubMed  CAS  Google Scholar 

  95. Bibel DJ, Aly R, Shinefield HR. Antimicrobial activity of sphingosines. J Invest Dermatol 1992; 98: 269–73

    Article  PubMed  CAS  Google Scholar 

  96. Bibel DJ, Miller SJ, Brown BE, et al. Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J Invest Dermatol 1989; 92: 632–8

    Article  PubMed  CAS  Google Scholar 

  97. Bibel DJ, Aly R, Shah S, et al. Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol 1993; 73: 407–11

    PubMed  CAS  Google Scholar 

  98. Bibel DJ, Aly R, Shinefield HR. Topical sphingolipids in antisepsis and antifungal therapy. Clin Exp Dermatol 1995; 20: 395–400

    Article  PubMed  CAS  Google Scholar 

  99. Pavi cic T, Wollenwebert U, Farwickt M, et al. Antimicrobial and anti-inflammatory activity and efficacy of phytosphingosine: an in-vitro and in-vivo study addressing acne vulgaris. Int J Cosmet Sci 2007; 29: 181–90

    Article  CAS  Google Scholar 

  100. Kim S, Hong I, Hwang JS, et al. Phytosphingosine stimulates the differentiation of human keratinocytes and inhibits TPA-induced inflammatory epidermal hyper-plasia in hairless mouse skin. Mol Med 2006; 12: 17–24

    Article  PubMed  CAS  Google Scholar 

  101. Forrest M, Sun SY, Hajdu R, et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 2004; 309: 758–68

    Article  PubMed  CAS  Google Scholar 

  102. Sanna MG, Liao J, Jo E, et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 2004; 279: 13839–48

    Article  PubMed  CAS  Google Scholar 

  103. Li Z, Chen W, Hale JJ, et al. Discovery of potent 3,5-diphenyl-1,2,4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3. J Med Chem 2005; 48: 6169–73

    Article  PubMed  CAS  Google Scholar 

  104. Garg SK, Volpe E, Palmieri G, et al. Sphingosine 1-phosphate induces anti-microbial activity both in vitro and in vivo. J Infect Dis 2004; 189: 2129–38

    Article  PubMed  CAS  Google Scholar 

  105. Davis MD, Clemens JJ, Macdonald TL, et al. Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem 2005; 280: 9833–41

    Article  PubMed  CAS  Google Scholar 

  106. Szentpetery V. Partikel gegen Pickel. Technol Rev 2006;11:10

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this article. H.C. Korting is collaborating with York Pharma, GmbH, Homberg (Ohm), Germany in the development of a topical drug for skin diseases incorporating sphingosine-1-phosphate. This project is supported by the German Federal Ministry of Education and Research. H.C. Korting also holds EU, Japanese, and other patents on the drug use of sphingosine-1-phosphate for various skin diseases. The other authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Herzinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzinger, T., Kleuser, B., Schäfer-Korting, M. et al. Sphingosine-1-Phosphate Signaling and the Skin. Am J Clin Dermatol 8, 329–336 (2007). https://doi.org/10.2165/00128071-200708060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200708060-00002

Keywords

Navigation