Skip to main content
Log in

A Comparison of Agents Used to Manage Type 2 Diabetes Mellitus

Need for Reappraisal of Traditional Approaches

  • Current Opinion
  • Published:
Treatments in Endocrinology

Abstract

In patients with type 2 diabetes mellitus, the traditional method of initiating therapy with a sulfonylurea and increasing the dosage until maximum levels are reached before adding an insulin-sensitizing agent has persisted and should be re-evaluated. Similarly, the current practice of starting therapy with one agent and increasing to maximum dosage before adding a second agent, rather than starting with combination therapy, also needs to be addressed. There is much evidence to suggest that initiating therapy with lower doses of two agents that have complementary effects can increase the overall efficacy and decrease the incidence of adverse effects. Clearly, there is a need for a paradigm shift away from the traditional approach of therapy using insulin secretagogues to a more pathophysiologic approach using an insulin-sensitizing agent, such as the thiazolidinediones. The thiazolidinediones have been shown to reduce insulin resistance, improve the ability of β-cells to produce insulin, and decrease cardiac risk factors. By reducing insulin resistance, improving glycemic control, and preserving β-cell function with a thiazolidinedione early in the course of therapy, it is likely that durable glycemic control will be achieved and both microvascular and macrovascular complications may be reduced. Furthermore, early use of an insulin-sensitizing agent either alone or in combination is expected to improve both acute and long-term outcomes in patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Defronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus: Multicenter Metformin Study Group. N Engl J Med 1995; 333: 541–9

    Article  PubMed  CAS  Google Scholar 

  2. Iwamoto Y, Kosaka K, Kuzuya J, et al. Effects of troglitazone: a new hypoglycemic agent in patients with NIDDM poorly controlled by diet therapy. Diabetes Care 1996; 19: 151–6

    Article  PubMed  CAS  Google Scholar 

  3. Horton ES, Whitehouse F, Ghazzi MN, et al. Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes: the Troglitazone Study Group. Diabetes Care 1998; 21: 1462–9

    Article  PubMed  CAS  Google Scholar 

  4. Gitlin N, Julie NL, Spurr CL, et al. Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med 1998; 129: 36–8

    PubMed  CAS  Google Scholar 

  5. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25: 815–21

    Article  PubMed  CAS  Google Scholar 

  6. Lebovitz HE. Stepwise and combination drug therapy for the treatment of NIDDM. Diabetes Care 1994; 17: 1542–4

    PubMed  CAS  Google Scholar 

  7. UK Prospective Diabetes Study Group. UKPDS 28: a randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes. Diabetes Care 1998; 21: 87–92

    Article  Google Scholar 

  8. Olsson J, Lindberg G, Gottsäter M, et al. Increased mortality in type II diabetic patients using sulphonylurea and metformin in combination: a population-based observational study. Diabetologia 2000; 43: 558–60

    Article  PubMed  CAS  Google Scholar 

  9. Fisman EZ, Tenenbaum A, Boyko V, et al. Oral antidiabetic treatment in patients with coronary disease: time-related increased mortality on combined glyburide/metformin therapy over a 7.7-year follow-up. Clin Cardiol 2001; 24: 151–8

    Article  PubMed  CAS  Google Scholar 

  10. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2002; 25Suppl. 1: S33–49

    Google Scholar 

  11. Stratton IM, Adler AI, Neil HAW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. The UK Prospective Diabetes Study Group. BMJ 2000; 321: 405–12

    Article  PubMed  CAS  Google Scholar 

  12. Khaw K-T, Wareham N, Luben R, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). BMJ 2001; 322: 15–8

    Article  PubMed  CAS  Google Scholar 

  13. ACE guidelines: American College of Endocrinology consensus statement on guidelines for glycemic control. Endocr Pract 2002; 8Suppl. 1: 6–11

    Google Scholar 

  14. Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283: 1695–702

    Article  PubMed  CAS  Google Scholar 

  15. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study 16: overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 1995; 44: 1249–58

    Article  Google Scholar 

  16. Lebovitz HE. Insulin secretagogues: old and new. Diabetes Rev 1999; 7: 139–53

    Google Scholar 

  17. Ovalle F, Bell DSH. Clinical evidence of thiazolidinedione-induced improvement of pancreatic β-cell function in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2002; 4: 56–9

    Article  PubMed  CAS  Google Scholar 

  18. Tian Y-M, Johnson G, Ashcroft SJH. Sulfonylureas enhance exocytosis from pancreatic β-cells by a mechanism that does not involve direct activation of protein kinase C. Diabetes 1998; 47: 1722–6

    Article  PubMed  CAS  Google Scholar 

  19. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–61

    Article  PubMed  CAS  Google Scholar 

  20. Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus: a randomized, double-blind, placebocontrolled trial. Ann Intern Med 1998; 128: 176–85

    PubMed  CAS  Google Scholar 

  21. Bell DSH, Ovalle F. Tissue triglyceride levels in type 2 diabetes and the role of thiazolidinediones in reversing the effects of tissue hypertriglyceridemia: review of the evidence in animals and humans. Endocr Pract 2001; 7: 135–8

    PubMed  CAS  Google Scholar 

  22. Yang W-S, Jeng C-Y, Wu T-J, et al. Synthetic peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25: 376–80

    Article  PubMed  CAS  Google Scholar 

  23. Chandran M, Phillips S, Ciaraldi T, et al. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003; 26: 2442–8

    Article  PubMed  CAS  Google Scholar 

  24. Shimabukuro M, Ohneda M, Lee Y, et al. Role of nitric oxide in obesity-induced β cell disease. J Clin Invest 1997; 100: 290–5

    Article  PubMed  CAS  Google Scholar 

  25. Shimabukuro M, Koyama K, Lee Y, et al. Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1β cytotoxicity. J Clin Invest 1997; 100: 1750–4

    Article  PubMed  CAS  Google Scholar 

  26. Finegood DT, McArthur MD, Kojwang D, et al. β-cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death. Diabetes 2001; 50: 1021–9

    Article  PubMed  CAS  Google Scholar 

  27. Porter LE, Freed MI, Jones NP, et al. Rosiglitazone improves β-cell function as measured by proinsulin/insulin ratio in patients with type 2 diabetes [abstract]. Diabetes 2000; 49Suppl. 1: A122

    Google Scholar 

  28. Ovalle F, Bell DSH. Triple oral antidiabetic therapy in type 2 diabetes mellitus. Endocr Pract 1998; 4: 146–7

    PubMed  CAS  Google Scholar 

  29. Bell DSH, Ovalle F. Long-term efficacy of triple oral therapy for type 2 diabetes mellitus. Endocr Pract 2002; 8: 271–5

    PubMed  Google Scholar 

  30. Bell DSH, Ovalle F, Shadmany S. Conversion from troglitazone to rosiglitazone [letter]. Endocr Pract 2001; 7: 326

    PubMed  CAS  Google Scholar 

  31. Dandona P, Aljada A, Chaudhuri A, et al. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 2422–9

    Article  PubMed  CAS  Google Scholar 

  32. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001; 86: 3257–65

    Article  PubMed  CAS  Google Scholar 

  33. Aljada A, Garg R, Ghanim H, et al. Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001; 86: 3250–6

    Article  PubMed  CAS  Google Scholar 

  34. Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86: 1306–12

    Article  PubMed  CAS  Google Scholar 

  35. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84

    Article  PubMed  CAS  Google Scholar 

  36. Torzewski M, Rist C, Montensen RF, et al. C-Reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20: 2094–9

    Article  PubMed  CAS  Google Scholar 

  37. Mohanty P, Aljada A, Ghanim H, et al. Rosiglitazone improves vascular reactivity, inhibits reactive oxygen species (ROS) generation, reduces p47Phox subunit expression in mononuclear cells (MNC) and reduces C-reactive protein (CRP) and monocyte chemotactic protein-1 (MCP-1): evidence of a potent anti-inflammatory effect [abstract]. Diabetes 2001; 50Suppl. 2: A68

    Google Scholar 

  38. Law RE, Goetze S, Xi X-P, et al. Expression and function of PPARγ in rat and human vascular smooth muscle cells. Circulation 2000; 101: 1311–8

    Article  PubMed  CAS  Google Scholar 

  39. Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36: 1529–35

    Article  PubMed  CAS  Google Scholar 

  40. Choi SH, Choi DH, Ko YK, et al. Preventive effects of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes [abstract]. Diabetes 2003; 52Suppl. 1: A19

    Google Scholar 

  41. Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20

    Article  PubMed  CAS  Google Scholar 

  42. Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6

    Article  PubMed  CAS  Google Scholar 

  43. Bakris GL, Dole JF, Porter LE, et al. Rosiglitazone improves blood pressure in patients with type 2 diabetes mellitus [abstract]. Diabetes 2000; 49Suppl. 1: A96

    Google Scholar 

  44. Ovalle F, Bell DSH. Differing effects of thiazolidinediones on HDL subfractions and Lp(a) [abstract]. Diabetes 2001; 50Suppl. 2: A461–2

    Google Scholar 

  45. Winkler K, Konrad T, Fuellert S, et al. Pioglitazone selectively reduces dense LDL: a placebo controlled trial in hypertensive patients [poster]. The 38th Annual Meeting of the European Association for the Study of Diabetes; 2002 Sep 4, Budapest

  46. Ovalle F, Bell DSH. Lipoprotein effects of different thiazolidinediones in clinical practice. Endocr Pract 2002; 8: 406–10

    PubMed  Google Scholar 

  47. Freed MI, Ratner R, Marcovina SM, et al. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities of type 2 diabetes mellitus. Am J Cardiol 2002; 90: 947–52

    Article  PubMed  CAS  Google Scholar 

  48. Feingold KR, Grunfeld C, Pang M, et al. LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 1992; 12: 1496–502

    Article  PubMed  CAS  Google Scholar 

  49. Syvanne M, Taskinen M-R. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350Suppl. 1: 20–3

    Article  Google Scholar 

  50. McTernan PG, Eggo MC, Smith SA, et al. Rosiglitazone inhibits the insulin-mediated increase in PAI-1 secretion in human subcutaneous adipocytes [abstract]. Diabetes 2001; 50Suppl. 2: A275

    Google Scholar 

  51. Kohler HP, Grant P. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342: 1792–801

    Article  PubMed  CAS  Google Scholar 

  52. Sobel BE, Woodcock-Mitchell J, Schneider DJ, et al. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation 1998; 97: 2213–21

    Article  PubMed  CAS  Google Scholar 

  53. Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–7

    Article  PubMed  CAS  Google Scholar 

  54. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840–4

    Article  PubMed  CAS  Google Scholar 

  55. Williams SB, Cusco JA, Roddy M-A, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1996; 27: 567–74

    Article  PubMed  CAS  Google Scholar 

  56. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduces urinary albumin excretion in type 2 diabetes. J Hum Hypertens 2003; 17: 7–12

    Article  PubMed  CAS  Google Scholar 

  57. Imano E, Kanda T, Nakatani Y, et al. Effect of troglitazone on microalbuminuria in patients with incipient diabetic nephropathy. Diabetes Care 1998; 21: 2135–9

    Article  PubMed  CAS  Google Scholar 

  58. Nakamura T, Ushiyama C, Shimada N, et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients. J Diabetes Complications 2000; 14: 250–4

    Article  PubMed  CAS  Google Scholar 

  59. Bell DSH, Ovalle F. Metformin lowers lipoprotein(a) levels [letter]. Diabetes Care 1998; 21: 2028

    Google Scholar 

  60. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 2002; 287: 360–72

    Article  PubMed  CAS  Google Scholar 

  61. Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22: 288–93

    Article  PubMed  CAS  Google Scholar 

  62. Spivak JL. Erythropoietin use and abuse: when physiology and pharmacology collide. In: Roach RC, Wagner PD, Hackett PH, editors. Hypoxia: from genes to the bedside. New York: Kluwer Academic/Plenum Publishers, 2001: 207–24

    Google Scholar 

  63. Baba T, Shimada K, Neugebauer S, et al. The oral insulin sensitizer, thiazolidinedione, increases plasma vascular endothelial growth factor in type 2 diabetic patients. Diabetes Care 2001; 24: 953–4

    Article  PubMed  CAS  Google Scholar 

  64. Eto K, Ohya Y, Nakamura Y, et al. Comparative actions of insulin sensitizers on ion channels in vascular smooth muscle. Eur J Pharmacol 2001; 423: 1–7

    Article  PubMed  CAS  Google Scholar 

  65. Viberti G, Kahn S, Greene DA, et al. A Diabetes Outcome Progression Trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002; 25: 1737–43

    Article  PubMed  CAS  Google Scholar 

  66. Perfetti R, Ahmad A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin. Trends Endocrinol Metab 2000; 11: 218–23

    Article  PubMed  CAS  Google Scholar 

  67. Zimmerman BR. Sulfonylureas. Endocrinol Metab Clin North Am 1997; 26: 511–22

    Article  PubMed  CAS  Google Scholar 

  68. Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 737–54

    Article  PubMed  CAS  Google Scholar 

  69. Jovanovic L, Dailey III G, Huang W-C, et al. Repaglinide in type 2 diabetes: a 24-week, fixed-dose efficacy and safety study. J Clin Pharmacol 2000; 40: 49–57

    Article  PubMed  CAS  Google Scholar 

  70. Horton ES, Clinkingbeard C, Gatlin M, et al. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care 2000; 23: 1660–5

    Article  PubMed  CAS  Google Scholar 

  71. Hanefeld M, Bouter KP, Dickinson S, et al. Rapid and short-acting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care 2000; 23: 202–7

    Article  PubMed  CAS  Google Scholar 

  72. Goldberg RB, Einhorn D, Lucas CP, et al. A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes Care 1998; 21: 1897–903

    Article  PubMed  CAS  Google Scholar 

  73. Bell DSH, Yumuk VD. Frequency of severe hypoglycemia in patients with non-insulin-dependent diabetes mellitus treated with sulfonylureas or insulin. Endocr Pract 1997; 3: 281–3

    PubMed  CAS  Google Scholar 

  74. Holstein A, Plaschke A, Egberts E-H. Lower incidence of severe hypoglycaemia in type 2 diabetic patients treated with glimepiride versus glibenclamide [abstract]. Diabetologia 2000; 43Suppl. 1: A40

    Google Scholar 

  75. Wallace TM, Matthews DR. Poor glycaemic control in type 2 diabetes: a conspiracy of disease, suboptimal therapy and attitude. QJM 2000; 93: 369–74

    Article  PubMed  CAS  Google Scholar 

  76. Bautista JL, Bugos C, Dirnberger G, et al. The efficacy and safety of Amaryl as compared to placebo in Mexican-Americans with type 2 diabetes inadequately controlled by exercise and diet alone [abstract]. Diabetes Res Clin Pract 2000; 50Suppl. 1: S46

    Article  Google Scholar 

  77. Glucophage prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2001

  78. Bailey CJ. Biguanides and NIDDM. Diabetes Care 1992; 15: 755–72

    Article  PubMed  CAS  Google Scholar 

  79. Chu NV, Kong APS, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care 2002; 25: 542–9

    Article  PubMed  CAS  Google Scholar 

  80. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–65

    Article  Google Scholar 

  81. Garber AJ, Duncan TG, Goodman AM, et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med 1997; 103: 491–7

    Article  PubMed  CAS  Google Scholar 

  82. Glucophage XR prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2001

  83. Bauman WA, Shaw S, Jayatilleke E, et al. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care 2000; 23: 1227–31

    Article  PubMed  CAS  Google Scholar 

  84. Wiholm B-E, Myrhed M. Metformin-associated lactic acidosis in Sweden 1977–1991. Eur J Clin Pharmacol 1993; 44: 589–91

    Article  PubMed  CAS  Google Scholar 

  85. Campbell IW. Metformin and the sulphonylureas: the comparative risk. Horm Metab Res 1985; 15 Suppl.: 105–11

    CAS  Google Scholar 

  86. Misbin RI, Green L, Stadel BV, et al. Lactic acidosis in patients with diabetes treated with metformin [letter]. N Engl J Med 1998; 338: 265–6

    Article  PubMed  CAS  Google Scholar 

  87. Lebovitz HE. A new oral therapy for diabetes management: alpha-glucosidase inhibition with acarbose. Clin Diabetes 1995; 13: 99–103

    Google Scholar 

  88. Chiasson J-L, Josse RG, Hunt JA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus: a multicenter controlled clinical trial. Ann Intern Med 1994; 121: 928–35

    PubMed  CAS  Google Scholar 

  89. Chiasson J-L, Josse RG, Gomis R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. The STOP-NIDDM Trial Research Group. Lancet 2002; 359: 2072–7

    Article  PubMed  CAS  Google Scholar 

  90. Segal P, Feig PU, Schernthaner G, et al. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care 1997; 20: 687–91

    Article  PubMed  CAS  Google Scholar 

  91. Coniff RF, Shapiro JA, Seaton TB. Long-term efficacy and safety of acarbose in the treatment of obese subjects with non-insulin-dependent diabetes mellitus. Arch Intern Med 1994; 154: 2442–8

    Article  PubMed  CAS  Google Scholar 

  92. Glyset prescribing information. Kalamazoo (MI): Pharmacia & Upjohn Company, 2001

  93. Precose prescribing information. West Haven (CT): Bayer Corporation Pharmaceutical Division, 2001

  94. Jones TW, Porter P, Sherwin RS, et al. Decreased epinephrine responses to hypoglycemia during sleep. N Engl J Med 1998; 338: 1657–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Technical assistance for the preparation of this manuscript was funded by an unrestricted educational grant from GlaxoSmithKline Pharmaceuticals.

The author has received research grants from Novo Nordisk Pharmaceuticals, Aventis Pharmaceuticals, Bristol-Myers Squibb Pharmaceuticals, Takeda Pharmaceuticals, Novartis Pharmaceuticals, and GlaxoSmithKline Pharmaceuticals. The author is a consultant to Novo Nordisk Pharmaceuticals, Eli Lilly and Company, GlaxoSmithKline Pharmaceuticals, and Aventis Pharmaceuticals and is a member of the Speakers Bureau of GlaxoSmithKline Pharmaceuticals, Bristol-Myers Squibb Pharmaceuticals, Aventis Pharmaceuticals, Novo Nordisk Pharmaceuticals, Novartis Pharmaceuticals, and Astra Zeneca Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. H. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, D.S.H. A Comparison of Agents Used to Manage Type 2 Diabetes Mellitus. Mol Diag Ther 3, 67–76 (2004). https://doi.org/10.2165/00024677-200403020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200403020-00001

Keywords

Navigation