Skip to main content
Log in

Cognitive Deficits and Psychosis in Parkinson’s Disease

A Review of Pathophysiology and Therapeutic Options

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurodegenerative disorder causing not only motor dysfunction but also cognitive, psychiatric, autonomic and sensory disturbances. Symptoms of dementia and psychosis are common: longitudinal studies suggest that up to 75% of patients with Parkinson’s disease may eventually develop dementia, and the prevalence of hallucinations ranges from 16–17% in population-based surveys to 30–40% in hospital-based series. These cognitive and behavioural features are important in terms of prognosis, nursing home placement and mortality.

The pattern of cognitive deficits in Parkinson’s disease is variable, but often includes executive impairment similar to that seen in patients with frontal lesions, as well as episodic memory impairment, visuospatial dysfunction and impaired verbal fluency. The most common manifestation of psychosis in Parkinson’s disease is visual hallucinations, but delusions, paranoid beliefs, agitation and florid psychosis can also occur.

An understanding of the pathophysiology underlying these symptoms is essential to the development of targeted therapeutic strategies. Post-mortem studies suggest an association between Lewy body deposition and dementia in Parkinson’s disease, and indeed Parkinson’s disease and dementia with Lewy bodies may form part of the same disease spectrum. Whether Lewy bodies actually play a causative role in cognitive dysfunction, however, is unknown. Deficits in neurotransmitter systems provide more obvious therapeutic targets and dysfunction of dopaminergic, cholinergic, noradrenergic and serotonergic systems have all been implicated; these may each underlie different features of Parkinson’s disease dementia, perhaps explaining some of the heterogeneity of the syndrome.

Psychosis has traditionally been considered as a dopaminergic drug-induced phenomenon, but factors intrinsic to the disease process itself also cause hallucinations and delusions. These factors may include Lewy body deposition in the limbic system, cholinergic deficits and impairments of primary visual processing.

Therapeutic intervention for cognitive and behavioural symptoms in Parkinson’s disease currently focuses on two main groups of drugs: cholinesterase inhibitors and atypical antipsychotics. A recent large, randomised, controlled trial suggests that cholinesterase inhibitors can produce a modest improvement in cognitive function, as well as psychotic symptoms, generally without an adverse effect on motor function. Certain atypical antipsychotics allow hallucinations, delusions and behavioural problems to be brought under control with minimal deleterious effects on motor function and cognition, but their safety in elderly patients has recently been called into question. Deep brain stimulation does not appear to be a useful treatment for cognitive and psychiatric dysfunction in patients with Parkinson’s disease. Modafinil improves alertness in Parkinson’s disease and warrants further investigation to establish its effects on cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Braak H, Del Tredici K, Bratzke H, et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 2002; 249(3 Suppl.): III/1–5

    Google Scholar 

  2. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 745–52

    Article  PubMed  CAS  Google Scholar 

  3. Parkinson J. An essay on the shaking palsy. London: Whittingham and Roland, 1817

    Google Scholar 

  4. Rakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease. A 3D [18(F)]dopa-PET study. Brain 1999; 122: 1637–50

    Article  PubMed  Google Scholar 

  5. Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 2000; 69: 308–12

    Article  PubMed  CAS  Google Scholar 

  6. Aarsland D, Larsen JP, Karlsen K, et al. Mental symptoms in Parkinson’s disease are important contributors to caregiver distress. Int J Geriatr Psychiatry 1999; 14: 886–74

    Google Scholar 

  7. Nussbaum M, Treves TA, Inzelberg R, et al. Survival in Parkinson’s disease: the effect of dementia. Parkinsonism Relat Disord 1998; 4: 179–81

    Article  PubMed  CAS  Google Scholar 

  8. Goetz CG, Stebbins GT. Risk factors for nursing home placement in advanced Parkinson’s disease. Neurology 1993; 43: 2227–9

    Article  PubMed  CAS  Google Scholar 

  9. Mayeux R, Dennaro J, Hemenegildo N, et al. A population-based investigation of Parkinson’s disease in Finland: relationship to age and gender. Arch Neurol 1992; 49: 492–7

    Article  PubMed  CAS  Google Scholar 

  10. Aarsland D, Tandberg E, Larsen JP, et al. Frequency of dementia in Parkinson disease. Arch Neurol 1996; 53: 538–42

    Article  PubMed  CAS  Google Scholar 

  11. Hobson P, Meara J. The detection of dementia and cognitive impairment in a community population of elderly people using the Parkinson’s disease by use of the CAMCOG neuropsychological test. Age Ageing 1999; 28: 39–43

    Article  PubMed  CAS  Google Scholar 

  12. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed., revised. Washington, DC: American Psychiatric Association, 1987

    Google Scholar 

  13. Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson Disease: an 8-year prospective study. Arch Neurol 2003; 60: 387–92

    Article  PubMed  Google Scholar 

  14. Mayeux R, Chen J, Mirabello E, et al. An estimate of the incidence of dementia in idiopathic Parkinson’s disease. Neurology 1990; 40: 1513–7

    Article  PubMed  CAS  Google Scholar 

  15. Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord 2004; 19(9): 1043–9

    Article  PubMed  Google Scholar 

  16. Foltynie T, Brayne CEG, Robbins TW, et al. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 2004; 127: 1–11

    Google Scholar 

  17. Levin BE, Katzen HL. Early cognitive changes and nondementing behavioral abnormalities in Parkinson’s disease. Adv Neurol 2005; 96: 84–94

    PubMed  Google Scholar 

  18. Inzelberg R, Kipervasser S, Korczyn RD. Auditory hallucinations in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1998; 64: 533–5

    Article  PubMed  CAS  Google Scholar 

  19. Fenelon G, Mahieux F, Huon R, et al. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 2000; 123: 733–45

    Article  PubMed  Google Scholar 

  20. Holroyd S, Currie L, Wooten GF. Prospective study of hallucinations and delusions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001; 70: 734–8

    Article  PubMed  CAS  Google Scholar 

  21. Aarsland D, Larsen JP, Cummings JL, et al. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999; 56: 595–601

    Article  PubMed  CAS  Google Scholar 

  22. Barnes J, David AS. Visual hallucinations in Parkinson’s disease: a review and phenomenogical survey. J Neurol Neurosurg Psychiatry 2001; 70: 727–33

    Article  PubMed  CAS  Google Scholar 

  23. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  24. Pillon B, Boller F, Levy R, et al. Cognitive deficits and dementia in Parkinson’s disease. In: Boiler F, Cappa S, editors. Handbook of neuropsychology. 2nd ed. Amsterdam: Elsevier, 2001: 311-71

    Google Scholar 

  25. Emre M. Dementia associated with Parkinson’s disease. Lancet Neurol 2003; 2: 229–37

    Article  PubMed  CAS  Google Scholar 

  26. Aarsland D, Litvan I, Salmon D, et al. Performance on the dementia rating scale in Parkinson’s disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 1215–20

    Article  PubMed  CAS  Google Scholar 

  27. Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 1992; 115(6): 1727–51

    Article  PubMed  Google Scholar 

  28. Robbins TW, James M, Owen AM, et al. Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 1994; 57(1): 79–88

    Article  PubMed  CAS  Google Scholar 

  29. Cools R, Barker RA, Sahakian BJ, et al. Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 2001; 124: 2503–12

    Article  PubMed  CAS  Google Scholar 

  30. Helkala EL, Laulumaa V, Soininen H, et al. Recall and recognition memory in patients with Alzheimer’s and Parkinson’s disease. Ann Neurol 1988; 24: 214–7

    Article  PubMed  CAS  Google Scholar 

  31. Pillon B, Deweer B, Agid Y, et al. Explicit memory in Alzheimer’s, Huntingdon’s and Parkinson’s disease. Arch Neurol 1993; 50: 374–9

    Article  PubMed  CAS  Google Scholar 

  32. Pillon B, Dubois B, Ploska A, et al. Severity and specificity of cognitive impairment in Alzheimer’s, Huntingdon’s, and Parkinson’s diseases and progressive supranuclear palsy. Neurology 1991; 41: 634–43

    Article  PubMed  CAS  Google Scholar 

  33. Levin BE, Llabre MM, Reisman S, et al. Visuospatial impairment in Parkinson’s disease. Neurology 1991; 41(3): 365–9

    Article  PubMed  CAS  Google Scholar 

  34. Girotti F, Soliveri P, Carella F, et al. Dementia and cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 1498–502

    Article  PubMed  CAS  Google Scholar 

  35. Stern Y, Richards M, Sano M, et al. Comparison of cognitive changes in patients with Alzheimer’s and Parkinson’s disease. Arch Neurol 1993; 50(10): 1040–5

    Article  PubMed  CAS  Google Scholar 

  36. Huber SJ, Shuttleworth EC, Friedberg DL. Neuropsychological differences between the dementias of Alzheimer’s and Parkinson’s diseases. Arch Neurol 1989; 46(12): 1287–91

    Article  PubMed  CAS  Google Scholar 

  37. Stern Y, Mayeux R, Rosen J, et al. Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry 1983; 46(2): 145–51

    Article  PubMed  CAS  Google Scholar 

  38. Cummings JL. The dementias of Parkinson’s disease: prevalence, characteristics, neurobiology, and comparison with dementia of the Alzheimer type. Eur Neurol 1988; 28(1 Suppl.): S15–23

    Google Scholar 

  39. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 745–52

    Article  PubMed  CAS  Google Scholar 

  40. Moskowitz C, Moses H, Klawans HL. Levodopa-induced psychosis: a kindling phenomenon. Am J Psychiatry 1978; 135: 669–75

    Google Scholar 

  41. Goetz CG, Stebbins GT. Mortality and hallucinations in nursing home patients with advanced Parkinson’s disease. Neurology 1995; 45: 669–71

    Article  PubMed  CAS  Google Scholar 

  42. Pappert EJ, Goetz CG. Stability of hallucinations and illusions in Parkinson’s disease: 18 month prospective study [abstract]. Mov Disord 1988; 13 Suppl.: 90

    Google Scholar 

  43. Goetz CG. Hallucinations in Parkinson’s disease: the clinical syndrome. In: Stern GM, editor. Advances in neurology. Vol. 80. Philadelphia (PA): Lippincott Williams and Wilkins; 1999: 419–23

    Google Scholar 

  44. Aarsland D, Larsen JP, Lim NG, et al. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psych 1999; 67: 492–6

    Article  CAS  Google Scholar 

  45. Roane DM, Rogers JD, Robinson JH, et al. Delusional misidentification in association with parkinsonism. J Neuropsychiatry Clin Neurosci 1998; 10(2): 194–8

    PubMed  CAS  Google Scholar 

  46. Apaydin H, Ahlskog JE, Parisi JE, et al. Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 2002; 59: 102–12

    Article  PubMed  Google Scholar 

  47. Kuzuhara S, Mori H, Izumiyama N, et al. Lewy bodies are ubiquinated: a light and microscopic immunocytochemical study. Acta Neuropathol 1988; 75: 345–53

    Article  PubMed  CAS  Google Scholar 

  48. Spillantini MG, Crowther RA, Jakes R, et al. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998; 95: 6469–73

    Article  PubMed  CAS  Google Scholar 

  49. Mattila PM, Rinne JO, Helenius H, et al. Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 2000; 100: 285–90

    Article  PubMed  CAS  Google Scholar 

  50. Hurtig HI, Trojanowski JQ, Galvin J, et al. Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 2000; 54: 1916–21

    Article  PubMed  CAS  Google Scholar 

  51. Kovari E, Gold G, Herman FR, et al. Lewy body densities in the entorhinal and anterior cingulated cortex predict cognitive deficits in Parkinson’s disease. Acta Neuropathol 2003; 106: 83–8

    PubMed  Google Scholar 

  52. Aarsland D, Perry R, Brown A, et al. Neuropathology of dementia in Parkinson’s disease: a prospective, community-based study. Ann Neurol 2005; 58: 773–6

    Article  PubMed  Google Scholar 

  53. Colosimo C, Hughes AJ, Kilford L, et al. Lewy body cortical involvement may not always predict dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 852–6

    Article  PubMed  CAS  Google Scholar 

  54. Parkkinen L, Kauppinen T, Pirttila T, et al. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 2005; 57: 82–91

    Article  PubMed  CAS  Google Scholar 

  55. Braak H, Rub U, Jansen Steur ENH, et al. Cognitive status correlates with neuropathological stage in Parkinson disease. Neurology 2005; 64: 1404–10

    Article  PubMed  CAS  Google Scholar 

  56. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276: 2045–7

    Article  PubMed  CAS  Google Scholar 

  57. Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science 2003; 302: 841

    Article  PubMed  CAS  Google Scholar 

  58. Farrer M, Kachergus J, Forno L, et al. Comparison of kindreds with familial parkinsonism and α-synuclein genomic multiplications. Ann Neurol 2004; 55: 174–9

    Article  PubMed  CAS  Google Scholar 

  59. Burton E, McKeith IG, Burn DJ, et al. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 2004; 127: 791–800

    Article  PubMed  Google Scholar 

  60. Firbank MJ, Colloby SJ, Burn DJ, et al. Regional cerebral blood flow in Parkinson’s disease with and without dementia. Neuroimage 2003; 20: 1309–19

    Article  PubMed  CAS  Google Scholar 

  61. Stern Y, Langsten JW. Intellectual changes in people with MPTP-induced parkinsonism. Neurology 1985; 35: 1506–9

    Article  PubMed  CAS  Google Scholar 

  62. Stern Y, Tetrad JW, Martin WR, et al. Cognitive change following MPTP exposure. Neurology 1990; 40: 261–4

    Article  PubMed  CAS  Google Scholar 

  63. Rinne JO, Rummukainen J, Paljarvi L, et al. Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 1989; 26: 47–50

    Article  PubMed  CAS  Google Scholar 

  64. Jellinger KA, Paulus W. Clinico-pathological correlations in Parkinson’s disease. Clin Neurol Neurosurg 1992; 94 Suppl.: S86–8

    Article  PubMed  Google Scholar 

  65. Alexander GE, DeLong MR, Strick P. Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986; 9: 357–81

    Article  PubMed  CAS  Google Scholar 

  66. Lewis SJG, Dove A, Robbins T, et al. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003; 23(15): 6351–6

    PubMed  CAS  Google Scholar 

  67. Rinne JO, Portin R, Ruottinen H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease. Arch Neurol 2000; 57: 470–5

    Article  PubMed  CAS  Google Scholar 

  68. Cheesman A, Barker RA, Lewis SJ, et al. Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76(9): 1204–10

    Article  PubMed  CAS  Google Scholar 

  69. Lange KW, Robbins TW, Marsden CD, et al. L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berlin) 1992; 107(2–3): 394–404

    Article  CAS  Google Scholar 

  70. Cools R, Barker RA, Sahakian BJ, et al. Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cerebral Cortex 2001; 11: 1136–43

    Article  PubMed  CAS  Google Scholar 

  71. Foltynie T, Goldberg TE, Lewis SG, et al. Planning ability in Parkinson’s disease is influenced by the COMT Val158Met polymorphism. Mov Disord 2004; 19(8): 885–91

    Article  PubMed  Google Scholar 

  72. Kaasinen V, Nurmi E, Brack A, et al. Increased frontal [(18)F] flurodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain 2001; 124: 1125–30

    Article  PubMed  CAS  Google Scholar 

  73. Rakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced parkinson’s disease: a 3D [(18)F]dopa-PET study. Brain 1999; 122 (Pt 9): 1637–50

    Article  PubMed  Google Scholar 

  74. Cash R, Dennis T, L’Heureux R, et al. Parkinson’s disease and dementia: norepinephrine and dopamine in locus ceruleus. Neurology 1987; 37: 42–6

    Article  PubMed  CAS  Google Scholar 

  75. Scatton B, Javoy-Agid F, Rouquier L, et al. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Research 1983; 275: 321–8

    Article  PubMed  CAS  Google Scholar 

  76. Candy JM, Perry RH, Perry EK, et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 1983; 59(2): 277–89

    Article  PubMed  CAS  Google Scholar 

  77. Nakano I, Hirano A. Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 1984; 15(5): 415–8

    Article  PubMed  CAS  Google Scholar 

  78. Dubois B, Ruberg M, Javoy-Agid F, et al. A subcortico-cortical cholinergic system is affected in Parkinson’s disease. Brain Res 1983; 288: 213–8

    Article  PubMed  CAS  Google Scholar 

  79. Whitehouse PJ, Hedreen JC, White III CL, et al. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 1983; 13: 243–8

    Article  PubMed  CAS  Google Scholar 

  80. Perry EK, Curtis M, Dick DJ, et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1985; 48: 413–21

    Article  PubMed  CAS  Google Scholar 

  81. Dubois B, Danze F, Pillon B, et al. Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 1987; 22: 26–30

    Article  PubMed  CAS  Google Scholar 

  82. Kuzuhara S. Drug-induced psychotic symptoms in Parkinson’s disease: problems, management and dilemma. J Neurol 2001; 248Suppl. 3: 11128–31

    Google Scholar 

  83. Wolters EC. Intrinsic and extrinsic psychosis in Parkinson’s disease. J Neurol 2001; 248(3 Suppl.): III/22–7

    Google Scholar 

  84. Lewy FH. Die Lehre vom Tonus und die der Bewegung. Berlin: Springer Verlag, 1923

    Google Scholar 

  85. Mjones H. Paralysis agitans. A clinical and genetic study. Acta Psychiatr Scand 1949, S54

    Google Scholar 

  86. Goetz CG, Pappert EJ, Blasucci EJ, et al. Intravenous levodopa in hallucinating Parkinson’s disease patients: high dose challenge does not precipitate hallucinations. Neurology 1998; 50: 515–7

    Article  PubMed  CAS  Google Scholar 

  87. Diedrich NJ, Goetz CG, Raman R, et al. Poor visual discrimination and visual hallucinations in Parkinson’s disease. Clin Neuropharmacol 1998; 21: 289–95

    Google Scholar 

  88. Nguyen-Legros J. Functional neuroarchitecture of the retina: hypothesis on dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 1988; 10: 139–44

    Google Scholar 

  89. Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Opthalmol Vis Sci 1990; 21: 2473–5

    Google Scholar 

  90. Stebbins GT, Carrillo MC, Moseley ME, et al. Microstructural integrity of normal appearing white matter in Parkinson’s disease: a diffusion tensor imaging study with behavioural correlates [abstract]. Neurology 2002; 58(3 Suppl.): A200

    Google Scholar 

  91. Goetz CG, Medina D, Carrillo M, et al. Functional neuroimaging in Parkinson’s disease with hallucinations [abstract]. Neurology 2002; 58(3 Suppl.): A201

    Google Scholar 

  92. Diederich NJ, Goetz CG, Stebbins GT. Repeated visual hallucinations in Parkinson’s disease as disturbed external/internal perceptions: focused review and a new integrative model. Mov Disord 2005; 20(2): 130–40

    Article  PubMed  Google Scholar 

  93. Poewe W. Psychosis in Parkinson’s disease. Mov Disord 2003; 18(6 Suppl.): S80–7

    Article  PubMed  Google Scholar 

  94. Cornelia CL, Tanner CM, Ristanovic RK. Polysomnographic sleep measures in Parkinson’s disease patients with treatment induced hallucinations. Ann Neurol 1993; 34: 710–4

    Article  Google Scholar 

  95. Jellinger K. The pedunculopontine nucleus in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 540–3

    Article  PubMed  CAS  Google Scholar 

  96. Harding AJ, Broe GA, Halliday GM. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain 2002; 125: 391–403

    Article  PubMed  CAS  Google Scholar 

  97. Williams DR, Lees AJ. Visual hallucinations in the diagnosis of idiopathic Parkinson’s disease: a retrospective autopsy study. Lancet Neurol 2005; 4: 605–10

    Article  PubMed  Google Scholar 

  98. McKeith IG, Burn DJ. Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. In: DeKosky ST, editor. Neurologic clinics: dementia. Vol. 18. Philadelphia (PA): WB Saunders, 2000: 865–83

    Google Scholar 

  99. Poirer J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Prac 2002; (127 Suppl.): 6–19

  100. Mesulam M, Guillozet A, Shaw P, et al. Widely spread butyrylcholinesterase can hydrolyse acetylcholine in the normal and Alzheimer brain. Neurolbiol Dis 2002; 9: 88–93

    Article  CAS  Google Scholar 

  101. Weinstock M. Selectivity of cholinesterase inhibition. CNS Drugs 1999; 12: 307–23

    Article  CAS  Google Scholar 

  102. Aarsland D, Mosiman UP, McKeith IG. Role of cholinesterase inhibitors in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 2004; 17(3): 164–71

    Article  PubMed  Google Scholar 

  103. Van Laar T, de Vries JJ, Nakhosteen A, et al. Rivastigmine as an antipsychotic treatment in patients with Parkinson’s disease [abstract]. Parkinsonism Relat Disord 2001; 7 Suppl.: S73

    Google Scholar 

  104. Aarsland D, Hutchinson M, Larsen JP. Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. Int J Geriatr Psychiatry 2003; 18: 937–41

    Article  PubMed  CAS  Google Scholar 

  105. Giladi N, Shabtai H, Gurevich T, et al. Rivastigmine (Exelon) for dementia in patients with Parkinson’s disease. Acta Neurol Scand 2003; 108: 368–73

    Article  PubMed  CAS  Google Scholar 

  106. Minett TSC, Thomas A, Wilkinson LM. What happens when donepezil is suddenly withdrawn? An open label trial in dementia with Lewy bodies and Parkinson’s disease with dementia. Int J Geriatr Psychiatry 2003; 18: 988–93

    Article  PubMed  Google Scholar 

  107. Fabbrini G, Barbanti P, Aurilia C, et al. Donepezil in the treatment of hallucinations and delusions in Parkinson’s disease. Neurol Sci 2002; 23: 41–3

    Article  PubMed  CAS  Google Scholar 

  108. Hutchinson M, Fazzini E. Cholinesterase inhibition in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1996; 61: 624–5

    Google Scholar 

  109. Reading PJ, Luce AK, McKeith IG. Rivastigmine in the treatment of parkinsonian psychosis and cognitive impairment: preliminary findings from an open trial. Mov Disord 2001; 16: 1171–95

    Article  PubMed  CAS  Google Scholar 

  110. Werber EA, Rabey JM. The beneficial effect of cholinesterase inhibitors on patients suffering from Parkinson’s disease and dementia. J Neural Transm 2001; 108: 1319–25

    Article  PubMed  CAS  Google Scholar 

  111. Bergman J, Lerner V. Successful use of donepezil for the treatment of psychotic symptoms in patients with Parkinson’s disease. Clin Neuropharmacol 2002; 25(2): 107–10

    Article  PubMed  CAS  Google Scholar 

  112. Bullock R, Cameron A. Rivastigmine for the treatment of dementia and visual hallucinations associated with Parkinson’s disease: a case series. Curr Med Res Opin 2002; 18(5): 258–64

    Article  PubMed  CAS  Google Scholar 

  113. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Eng J Med 2004; 351: 2509–18

    Article  CAS  Google Scholar 

  114. Poewe W, on behalf of the EXPRESS study group. Long-term benefits of rivastigmine in dementia associated with Parkinson’s disease: an open-label extension study [abstract]. Mov Disord 2005; 20(10 Suppl.): S72

    Google Scholar 

  115. Aarsland D, Laake K, Larsen JP. Donepezil for cognitive impairment in Parkinson’s disease: a randomised controlled study. J Neurol Neurosurg Psychiatry 2002; 72: 708–12

    Article  PubMed  CAS  Google Scholar 

  116. Leroi I, Brandt J, Reich SG, et al. Randomised placebo-controlled trial of donepezil in cognitive impairment in Parkinson’s disease. Int J Geriatr Psychiatry 2004; 19: 1–8

    Article  PubMed  Google Scholar 

  117. National Institute of Clinical Excellence. Parkinson’s disease: full guideline, second consultation [online]. Available from URL: http://www.nice.org.uk [Accessed 2006 May 2]

  118. National Institute of Clinical Excellence. Appraisal consultation document: donepezil, galantamine, rivastigmine (review) and memantine for the treatment of Alzheimer’s disease [online]. Available from URL: http://www.nice.org.uk [Accessed 2006 Jan 23]

  119. Meltzer HY. What’s atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 2004; 4: 53–7

    Article  PubMed  CAS  Google Scholar 

  120. Baldessarini RJ, Frankenburg FR. Clozapine: a novel antipsychotic agent. N Engl J Med 1991; 324: 746–54

    Article  PubMed  CAS  Google Scholar 

  121. Task Force for the Movement Disorders Society. Drugs to treat dementia and psychosis. Mov Disord 2002; 17(4 Suppl.): S120–7

    Google Scholar 

  122. Wagner ML, Defilippi JL, Menza MA, et al. Clozapine for the treatment of psychosis in Parkinson’s disease: chart review of 49 patients. Neurosci 1996; 8(3): 276–80

    CAS  Google Scholar 

  123. Widman LP, Burke WJ, Pfeiffer RF, et al. Use of clozapine to treat levodopa-induced psychosis in Parkinson’s disease: retrospective review. J Geriatr Psychiatry Neurol 1997; 10: 63–6

    PubMed  CAS  Google Scholar 

  124. Ruggieri S, De Pandis MF, Bonamartini A, et al. Low dose clozapine in the treatment of dopaminergic psychosis in Parkinson’s disease. Clin Neuropharmacol 1997; 20(3): 204–9

    Article  PubMed  CAS  Google Scholar 

  125. The Parkinson Study Group. Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s disease. N Eng J Med 1999; 340: 757–63

    Article  Google Scholar 

  126. Klein C, Gordon J, Pollak L, et al. Clozapine in Parkinson’s disease psychosis: 5 year follow-up review. Clin Neuropharmacol 2003; 26: 8–11

    Article  PubMed  CAS  Google Scholar 

  127. Pollak P, Tison F, Rascol O, et al. Clozapine in drug induced psychosis in Parkinson’s disease: a randomised, placebo-controlled study with open follow-up. J Neurol Neurosurg Psychiatry 2004; 75: 689–95

    Article  PubMed  CAS  Google Scholar 

  128. Aarsland D, Larsen JP, Lim NG, et al. Olanzapine for psychosis in patients with Parkinson’s disease with and without dementia. J Neuropsychiatry Clin Neurosci 1999; 11(3): 392–4

    PubMed  CAS  Google Scholar 

  129. Breier A, Sutton VK, Feldman PD, et al. Olanzapine in the treatment of dopamimetic-induced psychosis in patients with Parkinson’s disease. Biol Psychiatry 2002; 52: 438–45

    Article  PubMed  CAS  Google Scholar 

  130. Ondo WG, Levy JK, Dat Vuong K, et al. Olanzapine treatment for dopaminergic-induced hallucinations. Mov Disord 2002; 17(5): 1031–5

    Article  PubMed  Google Scholar 

  131. Fernandez HH, Friedman JH, Jacques C, et al. Quetiapine for the treatment of drug-induced psychosis in Parkinson’s disease. Mov Disord 1999; 14(3): 484–7

    Article  PubMed  CAS  Google Scholar 

  132. Juncos JL, Roberts VJ, Evatt ML, et al. Quetiapine improves sychotic symptoms and cognition in Parkinson’s disease. Mov Disord 2004; 19(1): 29–35

    Article  PubMed  Google Scholar 

  133. Mancini F, Tassorelli C, Martignoni E, et al. Long-term evaluation of the effect of quetiapine on hallucinations, delusions and motor function in advanced Parkinson disease. Clin Neuropharmacol 2004; 27(1): 33–7

    Article  PubMed  CAS  Google Scholar 

  134. Ondo WG, Tintner R, Voung KD, et al. Double-blind, placebo-controlled, unforced titration parallel trial of quetiapine for dopaminergic-induced hallucinations in Parkinson’s disease. Mov Disord 2005; 20: 958–63

    Article  PubMed  Google Scholar 

  135. Alvir J, Lieberman J, Safferman A, et al. Clozapine-induced agranulocytosis: incidence and risk factors in the United States. N Eng J Med 1993; 329: 162–7

    Article  CAS  Google Scholar 

  136. Meco G, Alessandri A, Bonifati V, et al. Risperidone for hallucinations in levodopa-treated Parkinson’s disease patients. Lancet 1994; 343: 1370–1

    Article  PubMed  CAS  Google Scholar 

  137. Rich S, Friedman J, Ott B. Risperidone versus clozapine in the treatment of psychosis in six patients with Parkinson’s disease and other akinetic-rigid syndromes. J Clin Psychiatry 1995; 56: 556–9

    PubMed  CAS  Google Scholar 

  138. Meco G, Alessandri A, Giustini P, et al. Risperidone in levodopa-induced psychosis in advanced Parkinson’s disease: an open-label, long-term study. Mov Disord 1997; 12: 610–1

    Article  PubMed  CAS  Google Scholar 

  139. Leopold NA. Risperidone treatment of drug-related psychosis in patients with parkinsonism. Mov Disord 2000; 15(2): 301–4

    Article  PubMed  CAS  Google Scholar 

  140. Arndt J, Skarsfeld T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 1998; 18: 63–101

    Article  Google Scholar 

  141. Fernandez HH, Trieschmann ME, Burke MA, et al. Long-term outcome of quetiapine use for psychosis among parkinsonian patients. Mov Disord 2003; 18(5): 510–4

    Article  PubMed  Google Scholar 

  142. Oechsner M, Korchounov A. Parenteral ziprasidone: a new atypical neuroleptic for emergency treatment of psychosis in Parkinson’s disease? Hum Psychopharmacol 2005; 20(3): 203–5

    Article  PubMed  Google Scholar 

  143. Fernandez HH, Trieschmann ME, Friedman JH. Aripiprazole for drug-induced psychosis in Parkinson disease: preliminary experience. Clin Neuropharmacol 2004; 27(1): 4–5

    Article  PubMed  CAS  Google Scholar 

  144. CSM important safety message on atypical antipsychotics and stroke [online]. Available from URL: http://medicines.mhra.gov.uk [Accessed 2004 Mar 9]

  145. Boutrel B, Koob GF. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 2004; 27(6): 1181–94

    PubMed  Google Scholar 

  146. Hogl B, Saletu M, Brandauer E, et al. Modafinil for the treatment of daytime sleepiness in Parkinson’s disease: a double-blind, randomized, crossover placebo-controlled polygraphic trial. Sleep 2002; 25(8): 905–9

    PubMed  CAS  Google Scholar 

  147. Alder CH, Caviness JN, Hentz JG, et al. Randomised trial of modafinil for treating subjective daytime sleepiness in patients with Parkinson’s disease. Mov Disord 2003; 18(3): 287–93

    Article  Google Scholar 

  148. Schwartz JR, Nelson MT, Schwartz ER, et al. Effects of modafinil on wakefulness and executive function in patients with narcolepsy experiencing late-day sleepiness. Clin Neuropharmacol 2004; 27(2): 74–9

    Article  PubMed  CAS  Google Scholar 

  149. Walsh JK, Randazzo AC, Stone KL, et al. Modafinil improves alertness, vigilance, and executive function during simulated night shifts. Sleep 2004; 27(3): 434–9

    PubMed  Google Scholar 

  150. Turner DC, Robbins TW, Clark L, et al. Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 2003; 165(3): 260–9

    CAS  Google Scholar 

  151. Turner DC, Clark L, Dowson J, et al. Modafinil improves cognition and response inhibition in adult attention-deficit/ hyperactivity disorder. Biol Psychiatry 2004; 55(10): 1031–40

    Article  PubMed  CAS  Google Scholar 

  152. Turner DC, Clark L, Pomarol-Clotet E, et al. Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology 2004; 29(7): 1363–73

    Article  PubMed  CAS  Google Scholar 

  153. Joel D, Weiner I. The organisation of the basal-ganglia thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 1994; 63: 363–79

    Article  PubMed  CAS  Google Scholar 

  154. Jahanshahi M, Ardouin CMA, Brown RG, et al. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 2000; 123: 1142–54

    Article  PubMed  Google Scholar 

  155. Woods SP, Fields JA, Troster AI. Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a critical review. Neuropsychol Rev 2002; 12(2): 111–26

    Article  PubMed  Google Scholar 

  156. Funkiewiez A, Ardouin C, Caputo E, et al. Long term affects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004; 75(6): 834–9

    Article  PubMed  CAS  Google Scholar 

  157. Anderson KE, Mullins J. Behavioural changes associated with deep brain stimulation surgery for Parkinson’s disease. Curr Neurol Neurosci Rep 2003; 3(4): 306–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ own work cited in this review was supported by grants from the Medical Research Council, the Parkinson’s Disease Society and the Wellcome Trust. Caroline Williams-Gray is a Patrick Berthoud Clinical Research Fellow and holds a Raymond and Beverley Sackler studentship. No further funding was used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline H. Williams-Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams-Gray, C.H., Foltynie, T., Lewis, S.J.G. et al. Cognitive Deficits and Psychosis in Parkinson’s Disease. CNS Drugs 20, 477–505 (2006). https://doi.org/10.2165/00023210-200620060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200620060-00004

Keywords

Navigation