Skip to main content
Log in

The Next Wave of Anticonvulsants

Focus on Levetiracetam, Oxcarbazepine and Zonisamide

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Since December 1999, 3 drugs have been cleared for marketing by the US Food and Drug Administration for the treatment of partial-onset seizures in adults with epilepsy — levetiracetam, oxcarbazepine and zonisamide. All are approved as adjunctive therapy; oxcarbazepine is also approved as monotherapy. Levetiracetam appears to have a novel mechanism of action, while the others block voltagesensitive sodium channels (oxcarbazepine and zonisamide) and T-type calcium channels (zonisamide). Levetiracetam and oxcarbazepine have short serum elimination half-lives and can be started at therapeutic dosages. All 3 drugs exhibit linear pharmacokinetics and have a low propensity for drug-drug interactions. There is extensive worldwide experience with oxcarbazepine and zonisamide, whereas exposure to levetiracetam has been limited to a relatively small number of patients in clinical trials.

These 3 drugs are important additions to the armamentarium for the treatment of seizures and offer patients whose lives are compromised by epilepsy the potential to achieve a better quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. 1Because the use of felbamate is associated with amarked increase in the incidence of aplastic anaemia and the occurrence of fatal hepatic failure, it should only be used in patients whose epilepsy is so severe that the risks of aplastic anaemia and liver failure are outweighed by the potential benefits of seizure control.

References

  1. Mattson RH, Cramer JA, Collins JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N Engl J Med 1985; 313(3): 145–51

    PubMed  CAS  Google Scholar 

  2. Schachter SC. Update in the treatment of epilepsy. Compr Ther 1995; 21(9): 473–9

    PubMed  CAS  Google Scholar 

  3. Schachter SC. Treatment of seizures. In: Schachter SC, Schomer DL, editors. The comprehensive evaluation and treatment of epilepsy. San Diego (CA): Academic Press, 1997: 61–74

    Google Scholar 

  4. Fix AF, French JA, Harden CL, et al. Discontinuation from three new antiepileptic drugs: causes, frequency, and associated factors [abstract]. Epilepsia 1999; 40 Suppl. 7: 145

    Google Scholar 

  5. Loscher W, Schmidt D. New drugs for the treatment of epilepsy. Curr Opin Invest Drugs 1993; 2: 1067–95

    Google Scholar 

  6. Patsalos PN. Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacol Ther 2000; 85(2): 77–85

    PubMed  CAS  Google Scholar 

  7. Patsalos PN, Walker MC, Ratnara N, et al. The pharmacokinetics of levetiracetam (UCB L059) in patients with intractable epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 4: 52

    Google Scholar 

  8. Doheny HC, Ratnaraj N, Whittington MA, et al. Blood and cerebrospinal fluid pharmacokinetics of the novel anticonvulsant levetiracetam (ucb L059) in the rat. Epilepsy Res 1999; 34(2–3): 161–8

    PubMed  CAS  Google Scholar 

  9. Nicolas J-M, Collart P, Gerin B, et al. In vitro evaluation of potential drug interactions with levetiracetam, a new antiepileptic agent. Drug Metab Dispos 1999; 27: 250–4

    PubMed  CAS  Google Scholar 

  10. Klitgaard H, Matagne A, Gobert J, et al. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 1998; 353(2–3): 191–206

    PubMed  CAS  Google Scholar 

  11. Browne TR, Szabo GK, Leppik IE, et al. Absence of pharmacokinetic drug interaction of levetiracetam with phenytoin in patients with epilepsy determined by new technique. J Clin Pharmaco 2000; 40(6): 590–5

    CAS  Google Scholar 

  12. Pellock J, Glauser T, Bebin M, et al. Single dose pharmacokinetics of levetiracetam in pediatric patients with partial epilepsy [abstract]. Epilepsia 1999; 40 Suppl. 2: 238–9

    Google Scholar 

  13. Walker MC, Patsalos PN. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol Ther 1995; 67(3): 351–84

    PubMed  CAS  Google Scholar 

  14. Copani A, Genazzani AA, Aleppo G, et al. Nootropic drugs positively modulate alpha-amino-3-hydroxy-5-methyl-4-isoxa-zolepropionic acid-sensitive glutamate receptors in neuronal cultures. J Neurochem 1992; 58: 1199–204

    PubMed  CAS  Google Scholar 

  15. Bering B, Muller WE. Interaction of piracetam with several neurotransmitter receptors in the central nervous system. Relative specificity for 3H-glutamate sites. Arzneimittelforschung 1985; 35: 1350–2

    CAS  Google Scholar 

  16. Sarter M. Taking stock of cognition enhancers. Trends Pharmacol Sci 1991; 12:456–61

    PubMed  CAS  Google Scholar 

  17. Noyer M, Gillard M, Matagne A, et al. The novel antiepileptic drug levetiracetam (ucb LO59) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol 1995; 286: 137–46

    PubMed  CAS  Google Scholar 

  18. Saccan AI, Lloyd GK. The binding of the anticonvulsant levetiracetam to rat brain membranes distinguishes a novel site relevant to antiepileptic drug activity [abstract]. Neuropsychopharmacology 1994; 10: 133S

    Google Scholar 

  19. Sills GJ, Leach JP, Fraser CM, et al. Neurochemical studies with the novel anticonvulsant levetiracetam in mouse brain. Eur J Pharmacol 1997; 325(1): 35–40

    PubMed  CAS  Google Scholar 

  20. Margineanu DG, Wulfert E. Inhibition by levetiracetam of a non-GABAA receptor-associated epileptiform effect of bicuculline in rat hippocampus. Br J Pharmacol 1997; 122(6): 1146–50

    PubMed  CAS  Google Scholar 

  21. Margineanu D-G, Klitgaard H. Levetiracetam reduces neuronal hypersynchrony induced by high K+ and low Ca2+ in CA3 area of rat hippocampal slices in vitro [abstract]. Epilepsia 1999; 40 Suppl. 7: 137

    Google Scholar 

  22. Klitgaard H. Levetiracetam counteracts propagation of epileptiform activity induced by systemic administration of pilocarpine and kainic acid to rats in vivo [abstract]. Epilepsia 1999; 40 Suppl. 7: 138

    Google Scholar 

  23. Loscher W, Honack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 1993; 232(2–3): 147–58

    PubMed  CAS  Google Scholar 

  24. Schmidt J. Comparative studies on the anticonvulsant effectiveness of nootropic drugs in kindled rats. Biochem Biophys Acta 1990; 1049: 413–9

    Google Scholar 

  25. Fischer W, Kittner H, Schubert S. The action of piracetam, meclofenoxate and vinpocetine in comparative disease models in mice. Pharmazie 1991; 6: 359–60

    Google Scholar 

  26. Gower AJ, Noyer M, Verloes R, et al. UCB LO59, a novel anti-convulsant drug: pharmacological profile in animals. Eur J Pharmacol 1992; 222: 193–203

    PubMed  CAS  Google Scholar 

  27. Gower AJ, Hirsch E, Boehrer A, et al. Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res 1995; 22: 207–13

    PubMed  CAS  Google Scholar 

  28. Matagne A, Klitgaard H. Levetiracetam protects against seizures in fully hippocampal-kindled rats [abstract]. Epilepsia 1999; 40 Suppl. 7: 137–8

    Google Scholar 

  29. Loscher W, Hanack D, Rundfeldt C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 1998; 284(2): 474–9

    PubMed  CAS  Google Scholar 

  30. Loscher W, Reissmuller E, Ebert U. Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoin-resistant kindled rats. Epilepsy Res 2000; 40(1): 63–77

    PubMed  CAS  Google Scholar 

  31. Ben-Menachem E, Falter U. ‘Proof of principle’ study to evaluate efficacy and safety of levetiracetam (1500 mg, bid) monotherapy in patients with refractory focal epilepsy [abstract]. Epilepsia 1999; 40 Suppl. 7: 218

    Google Scholar 

  32. Shorvon SD, van Rijckevorsel K, Verdru P. Pooled efficacy and safety data of levetiracetam (LEV) used as adjunctive therapy in patients with partial onset seizures [abstract]. Epilepsia 1999; 40 Suppl. 7: 76

    Google Scholar 

  33. Leppik I, Norhria V, French JA, et al. Levetiracetam is effective in reducing partial-onset seizures that are secondarily generalized (Type 1C) [abstract]. Epilepsia 1999; 40 Suppl. 7: 144

    Google Scholar 

  34. Cramer JA, Arrigo C, Van Hammee G, et al. Effect of levetiracetam on epilepsy-related quality of life. Epilepsia 2000; 41(7): 868–74

    PubMed  CAS  Google Scholar 

  35. Betts T, Waegemans T, Crawford P. Amulticentre, double-blind, randomized, parallel group study to evaluate the tolerability and efficacy of two oral doses of levetiracetam, 2000 mg daily and 4000 mg daily, without titration in patients with refractory epilepsy. Seizure 2000; 9(2): 80–7

    PubMed  CAS  Google Scholar 

  36. Glauser T, Bebin M, Ritter F, et al. Open-label efficacy and safety of levetiracetam in pediatric patients with partial onset seizures [abstract. Epilepsia 1999; 40 Suppl. 7: 161–2

    Google Scholar 

  37. Privitera M, Brodie M, Nohria V, et al. Open-label safety and efficacy of levetiracetam in refractory epileptic patients [abstract]. Epilepsia 1999; 40 Suppl. 7: 218–9

    Google Scholar 

  38. Kasteleijn-Nolst Trenite DG, Marescaux C, Stodieck S, et al. Photosensitive epilepsy: a model to study the effects of antiepileptic drugs. Evaluation of the piracetam analogue, levetiracetam. Epilepsy Res 1996; 25(3): 225–30

    CAS  Google Scholar 

  39. Shorvon SD. Levetiracetam’s potential in generalized seizures. In: Levetiracetam: profile of a novel anti-epileptic drug. Summary from Satellite Symposia in Quebec and Milan. UCB Pharma 1999; 10-1

  40. Loscher W. Development of new drugs with anti-epileptogenic potential: preclinical findings and clinical perspectives. Presentation at the 23rd International Epilepsy Congress; 1999 Sept 12–17; Prague

  41. Levetiracetam. Package insert. Smyrna (GA): UCB Pharma, Inc, 1999

    Google Scholar 

  42. Neyens LG, Alpherts WC, Aldenkamp AP. Cognitive effects of a new pyrrolidine derivative (levetiracetam) in patients with epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19(3): 411–9

    PubMed  CAS  Google Scholar 

  43. Schutz H, Feldmann KF, Faigle JW, et al. The metabolism of 14C-oxcarbazepine in man. Xenobiotica 1986; 16(8): 769–78

    PubMed  CAS  Google Scholar 

  44. Baruzzi A, Albani F, Riva R. Oxcarbazepine: pharmacokinetic interactions and their clinical relevance. Epilepsia 1994; 35 Suppl. 3: 14–9

    Google Scholar 

  45. Keränen T, Jolkkonen J, Klosterskov-Jensen P, et al. Oxcarbazepine does not interact with cimetidine in healthy volunteers. Acta Neurol Scand 1992; 85(4): 239–42

    PubMed  Google Scholar 

  46. Mogensen PH, Jorgensen L, Boas J, et al. Effects of dextropropoxyphene on the steady-state kinetics of oxcarbazepine and its metabolites. Acta Neurol Scand 1992; 85(1): 14–7

    PubMed  CAS  Google Scholar 

  47. Keränen T, Jolkkonen J, Jensen PK, et al. Absence of interaction between oxcarbazepine and erythromycin. Acta Neurol Scand 1992; 86(2): 120–3

    PubMed  Google Scholar 

  48. May TW, Rambeck B, Jurgens U. Influence of oxcarbazepine and methsuximide on lamotrigine concentrations in epileptic patients with and without valproic acid comedication: results of a retrospective study. Ther Drug Monit 1999; 21(2): 175–81

    PubMed  CAS  Google Scholar 

  49. Klosterskov Jensen P, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33(6): 1149–52

    PubMed  CAS  Google Scholar 

  50. Fattore C, Cipolla G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism by oxcarbazepine in healthy women. Epilepsia 1999; 40(6): 783–7

    PubMed  CAS  Google Scholar 

  51. Sonnen AEH. Oxcarbazepine and oral contraceptives [abstract]. Acta Neurol Scand 1990; 82 Suppl. 133: 37

    Google Scholar 

  52. Isojarvi JI, Pakarinen AJ, Rautio A, et al. Serum sex hormone levels after replacing carbamazepine with oxcarbazepine. Eur J Clin Pharmacol 1995; 47(5): 461–4

    PubMed  CAS  Google Scholar 

  53. Larkin JG, McKee PJ, Forrest G, et al. Lack of enzyme induction with oxcarbazepine (600 mg daily) in healthy subjects. Br J Clin Pharmacol 1991; 31(1): 65–71

    PubMed  CAS  Google Scholar 

  54. Rattya J, Vainionpaa L, Knip M, et al. The effects of valproate, carbamazepine, and oxcarbazepine on growth and sexual maturation in girls with epilepsy. Pediatrics 1999; 103(3): 588–93

    PubMed  CAS  Google Scholar 

  55. Schachter SC. Oxcarbazepine: current status and clinical applications. Exp Opin Invest Drugs 1999; 8: 1103–12

    CAS  Google Scholar 

  56. Degen PH, Flesch G, Cardot JM, et al. The influence of food on the disposition of the antiepileptic oxcarbazepine and its major metabolites in healthy volunteers. Biopharm Drug Dispos 1994; 15(6): 519–26

    PubMed  CAS  Google Scholar 

  57. Dickinson RG, Hooper WD, Dunstan PR, et al. First dose and steady-state pharmacokinetics of oxcarbazepine and its 10-hydroxy metabolite. Eur J Clin Pharmacol 1989; 37(1): 69–74

    PubMed  CAS  Google Scholar 

  58. Lloyd P, Flesch G, Dieterle W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: 10–3

    Google Scholar 

  59. Kristensen O, Klitgaard NA, Jonsson B, et al. Pharmacokinetics of 10-OH-carbazepine, the main metabolite of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurol Scand 1983; 68(3): 145–50

    PubMed  CAS  Google Scholar 

  60. Augusteijn R, van Parys JAP. Oxcarbazepine (Tripetal, OXC) — dose-concentration relationship in patients with epilepsy [abstract]. Acta Neurol Scand 1990; 82 Suppl. 133: 37

    Google Scholar 

  61. Rouan MC, Lecaillon JB, Godbillon J, et al. The effect of renal impairment on the pharmacokinetics of oxcarbazepine and its metabolites. Eur J Clin Pharmacol 1994; 47(2): 161–7

    PubMed  CAS  Google Scholar 

  62. van Heiningen PN, Eve MD, Oosterhuis B, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther 1991; 50(4): 410–9

    PubMed  Google Scholar 

  63. Houtkooper MA, Lammertsma A, Meyer JWA, et al. Oxcarbazepine (GP 47680) — a possible alternative to carbamazepine? Epilepsia 1987; 28: 693–8

    PubMed  CAS  Google Scholar 

  64. Sallas W, Hossain M, D’Souza J. Population pharmacokinetics analysis of oxcarbazepine (Trileptal) in children with epilepsy [abstract]. Epilepsia 1999; 40 Suppl. 7: 102

    Google Scholar 

  65. Schmutz M, Brugger F, Gentsch C, et al. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia 1994; 35 Suppl. 5: S47–50

    PubMed  Google Scholar 

  66. Wamil AW, Portet CH, Jensen PK, et al. Oxcarbazepine and its monohydroxy metabolite limit action potential firing by mouse central neurons in cell culture. Epilepsia 1991; 32 Suppl. 3: 65–6

    Google Scholar 

  67. McLean MJ, Schmutz M, Wamil AW, et al. Oxcarbazepine: mechanisms of action. Epilepsia 1994; 35 Suppl. 3: S5–9

    PubMed  Google Scholar 

  68. Stefani A, Pisani A, De Murtas M, et al. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. II. Modulation of high-voltage-activated calcium currents. Epilepsia 1995; 36(10): 997–1002

    CAS  Google Scholar 

  69. Calabresi P, De Murtas M, Stefani A, et al. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission. Epilepsia 1995; 36(10): 990–6

    CAS  Google Scholar 

  70. Waldmeier PC, Baumann PA, Wicki P, et al. Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 1995; 45(10): 1907–13

    PubMed  CAS  Google Scholar 

  71. Wamil AW, Schmutz M, Portet C, et al. Effects of oxcarbazepine and 10-hydroxycarbamazepine on action potential firing and generalized seizures. Eur J Pharmacol 1994; 271(2–3): 301–8

    PubMed  CAS  Google Scholar 

  72. Reinikainen KJ, Keranen T, Halonen T, et al. Comparison of oxcarbazepine and carbamazepine: a double-blind study. Epilepsy Res 1987; 1: 284–9

    PubMed  CAS  Google Scholar 

  73. Dam M, Ekberg R, Løyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6

    PubMed  CAS  Google Scholar 

  74. Christe W, Krämer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26:451–60

    PubMed  CAS  Google Scholar 

  75. Bill PA, Vigonius U, Pohlmann H, et al. A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in adults with previously untreated epilepsy. Epilepsy Res 1997; 27: 195–204

    PubMed  CAS  Google Scholar 

  76. Guerreiro MM, Vigonius U, Pohlmann H, et al. A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in children and adolescents with epilepsy. Epilepsy Res 1997; 27: 205–13

    PubMed  CAS  Google Scholar 

  77. Fisher RS, Eskola J, Blum D, et al. Open-label, pilot study of oxcarbazepine for inpatients under evaluation for epilepsy surgery. Drug Dev Res 1996; 38: 43–9

    CAS  Google Scholar 

  78. Schachter SC, Vazquez B, Fisher RS, et al. Oxcarbazepine: double-blind, randomized, placebo-control, monotherapy trial for partial seizures. Neurology 1999; 52: 732–7

    PubMed  CAS  Google Scholar 

  79. Beydoun A, Sachdeo RC, Rosenfeld WE, et al. Oxcarbazepine monotherapy for partial-onset seizures: a multicenter, double-blind, clinical trial. Neurology 2000; 54(12): 2245–51

    PubMed  CAS  Google Scholar 

  80. Bulau P, Stoll KD, Froscher W. Oxcarbazepine versus carbamazepine. In: Wolf P, Dam M, Janz D, et al., editors. Advances in epileptology. XVIth Epilepsy International Symposium. New York (NY): Raven Press, 1987: 531–6

    Google Scholar 

  81. Van Parys JAP, Meinardi H. Survey of 260 epileptic patients treated with oxcarbazepine (Trileptal) on a named-patient basis. Epilepsy Res 1994; 19: 79–85

    PubMed  Google Scholar 

  82. Borusiak P, Korn-Merker E, Holert N, et al. Oxcarbazepine treatment of childhood epilepsy: a survey of 46 children and adolescents. J Epilepsy 1998; 11: 355–60

    Google Scholar 

  83. Gaily E, Granstrom M-L, Liukkonen E. Oxcarbazepine in the treatment of early childhood epilepsy. J Child Neurol 1997; 12: 496–8

    PubMed  CAS  Google Scholar 

  84. Glauser TA, Nigro M, Sachdeo R, et al. Adjunctive therapy with oxcarbazepine in children with partial seizures. Neurology 2000; 54(12): 2237–44

    PubMed  CAS  Google Scholar 

  85. Bennett GD, Amore BM, Finnell RH, et al. Teratogenicity of carbamazepine-10, 11-epoxide and oxcarbazepine in the SWV mouse. J Pharmacol Exp Ther 1996; 279(3): 1237–42

    PubMed  CAS  Google Scholar 

  86. Friis ML, Kristensen O, Boas J, et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 1993; 87(3): 224–7

    PubMed  CAS  Google Scholar 

  87. Beran RG. Cross-reactive skin eruption with both carbamazepine and oxcarbazepine. Epilepsia 1993; 34(1): 163–5

    PubMed  CAS  Google Scholar 

  88. Curran HV, Java R. Memory and psychomotor effects of oxcarbazepine in healthy human volunteers. Eur J Clin Pharmacol 1993; 44(6): 529–33

    PubMed  CAS  Google Scholar 

  89. Sabers A, Moller A, Dam M, et al. Cognitive function and anticonvulsant therapy: effect of monotherapy in epilepsy. Acta Neurol Scand 1995; 92: 19–27

    PubMed  CAS  Google Scholar 

  90. Aikia M, Kalviainen R, Sivenius J, et al. Cognitive effects of oxcarbazepine and phenytoin monotherapy in newly diagnosed epilepsy: one year follow-up. Epilepsy Res 1992; 11: 199–203

    PubMed  CAS  Google Scholar 

  91. Ciba-Geigy Limited. International product information. Basel: Ciba, 1996

    Google Scholar 

  92. Pienimaki P, Lampela E, Hakkola J, et al. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia 1997; 38(3): 309–16

    PubMed  CAS  Google Scholar 

  93. Steinhoff BJ, Stoll K-D, Stodieck SRG, et al. Hyponatremic coma under oxcarbazepine therapy. Epilepsy Res 1992; 11: 67–70

    PubMed  CAS  Google Scholar 

  94. Dam M. Practical aspects of oxcarbazepine treatment. Epilepsia 1994; 35 Suppl. 3: S23–5

    PubMed  Google Scholar 

  95. Van Amelsvoort T, Bakshi R, Devaux CB, et al. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 1994; 35(1): 181–8

    PubMed  Google Scholar 

  96. Sachdeo RC, Wassertein AG, D’Souza J. Oxcarbazepine (Trileptal) effect on serum sodium [abstract]. Epilepsia 1999; 40 Suppl. 7: 103

    Google Scholar 

  97. Grant SM, Faulds D. Oxcarbazepine. A review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43(6): 873–88

    CAS  Google Scholar 

  98. Remillard G. Oxcarbazepine and intractable trigeminal neuralgia. Epilepsia 1994; 35 Suppl. 3: S28–9

    Google Scholar 

  99. Zakrzewska JM, Patsalos PN. Oxcarbazepine: a new drug in the management of intractable trigeminal neuralgia. J Neurol Neurosurg Psychiatry 1989; 52(4): 472–6

    PubMed  CAS  Google Scholar 

  100. Uno H, Kurokawa M, Masuda Y, et al. Studies on 3-substituted 1,2-benzisoxazole derivatives and their anticonvulsant activities. J Med Chem 1979; 22: 180–3

    PubMed  CAS  Google Scholar 

  101. Ito T, Hori M, Masuda Y, et al. 3-Sulfamoyl-methyl-1,2-benzisoxazole, a new type of anticonvulsant drug: electroenceph-alographic profile. Arzneimittelforschung 1980; 30: 603–9

    PubMed  CAS  Google Scholar 

  102. Nagatomi A, Mishima M, Tsuzuki O, et al. Utility of a rectal suppository containing the antiepileptic drug zonisamide. Biol Pharmacol Bull 1997; 20: 892–6

    CAS  Google Scholar 

  103. Perucca E, Bialer M. The clinical pharmacokinetics of the newer antiepileptic drugs. Focus on topiramate, zonisamide and tiagabine. Clin Pharmacokinet 1996; 31(1): 29–46

    CAS  Google Scholar 

  104. Matsumoto K, Miyazaki H, Fujii T, et al. Absorption, distribution and excretion of 3-(sulfamoyl(14C)-methyl)-1,2-benzisoxazole (AD-810) in rats, dogs, monkeys and of AD-810 in man. Arzneimittelforschung 1983; 33: 961–8

    PubMed  CAS  Google Scholar 

  105. Seino M, Naruto S, Ito T, et al. Other antiepileptic drugs: zonisamide. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York (NY): Raven Press, 1995: 1011–23

    Google Scholar 

  106. Matsumoto K, Miyazaki H, Fujii T, et al. Binding of sulfonamides to erythrocyte proteins and possible drug-drug interaction. Chem Pharm Bull 1989; 37: 2807–10

    PubMed  CAS  Google Scholar 

  107. Kochak GM, Page JG, Buchanan RA, et al. Steady-state pharmacokinetics of zonisamide, an antiepileptic agent for treatment of refractory complex partial seizures. J Clin Pharmacol 1998; 38(2): 166–71

    PubMed  CAS  Google Scholar 

  108. Sackellares JC, Donofrio PD, Wagner JG, et al. Pilot study of zonisamide (1,2-benzisoxazole-3-methanesulfonamide) in patients with refractory partial seizures. Epilepsia 1985; 26:206–11

    PubMed  CAS  Google Scholar 

  109. Minami T, Ieiri I, Ohtsubo K, et al. Influence of additional therapy with zonisamide (Excegran) on protein binding and metabolism of carbamazepine. Epilepsia 1994; 35: 1023–5

    PubMed  CAS  Google Scholar 

  110. Shinoda M, Akita M, Hasegawa M, et al. The necessity of adjusting the dosage of zonisamide when coadministered with other anti-epileptic drugs. Biol Pharm Bull 1996; 19(8): 1090–2

    PubMed  CAS  Google Scholar 

  111. Wilensky AJ, Friel PN, Ojemann LM, et al. Zonisamide in epilepsy: a pilot study. Epilepsia 1985; 26: 212–20

    PubMed  CAS  Google Scholar 

  112. Ono T, Yagi K, Seino M. Clinical efficacy and safety of a new antiepileptic drug, zonisamide: a multi-institutional phase III study. Seishin Iyaku 1988; 30: 471–82

    Google Scholar 

  113. Yagi K, Seino M. Open clinical trial of new antiepileptic drug, zonisamide (ZNA) on 49 patients with refractory epileptic seizures. Clin Psychiatry 1987; 29: 111–9

    Google Scholar 

  114. Ito T, Yamaguchi T, Miyazaki H, et al. Pharmacokinetic studies of AD-810, a new antiepileptic compound: phase 1 trials. Arzneimittelforschung 1982; 32: 1581–6

    PubMed  CAS  Google Scholar 

  115. Nishiguchi K, Ohnishi N, Iwakawa S, et al. Pharmacokinetics of zonisamide: saturable distribution into human and rat erythrocytes and into rat brain. J Pharmacobiodyn 1992; 15: 409–15

    PubMed  CAS  Google Scholar 

  116. Mimaki T. Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 1998; 20(6): 593–7

    PubMed  CAS  Google Scholar 

  117. Ojemann LM, McLean JR, Buchanan RA. Comparative pharmacokinetics of zonisamide (CI-912) in epileptic patients on carbamazepine or phenytoin monotherapy. Ther Drug Monit 1986; 8: 293–6

    PubMed  CAS  Google Scholar 

  118. Nakasa H, Komiya M, Ohmori S, et al. Characterization of human liver microsomal cytochrome P450 involved in the reductive metabolism of zonisamide. Mol Pharmacol 1993; 44: 218–21

    Google Scholar 

  119. Woolf TF, Clang T. Metabolism of 14C-zonisamide in healthy volunteers [abstract]. Pharm Res 1986; 3 Suppl. : 159s

    Google Scholar 

  120. Pariente-Khayar A, Tran A, Vauzelle-Kervroedan F, et al. Pharmacokinetics of oxcarbazepine as add-on therapy in epileptic children. Epilepsia 1994; 35 Suppl. 8: 119

    Google Scholar 

  121. Schauf CL. Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res 1987; 413: 185–8

    PubMed  CAS  Google Scholar 

  122. Suzuki S, Kawakami K, Nishimura S, et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 1992; 12: 21–7

    PubMed  CAS  Google Scholar 

  123. Kito M, Maehara M, Watanabe K. Mechanisms of T-type calcium channel blockade by zonisamide. Seizure 1996; 5(2): 115–9

    PubMed  CAS  Google Scholar 

  124. Zhu W, Rogawski MA. Zonisamide depresses excitatory synaptic transmission by a presynaptic action [abstract]. Epilepsia 1999; 40 Suppl. 7: 245

    Google Scholar 

  125. Okada M, Kaneko S, Hirano T, et al. Effects of zonisamide on dopaminergic system. Epilepsy Res 1995; 22: 193–205

    PubMed  CAS  Google Scholar 

  126. Endo A. Effect of zonisamide on neurotransmitter release from hippocampal slice of E1 mice: a study of neurotransmitter release using an improved experimental system. Okayama Igaku Zasshi 1995; 107: 69–78

    CAS  Google Scholar 

  127. Komatsu M, Okamura Y, Hiramatsu M. Free radical scavenging activity of zonisamide and its inhibitory effect on lipid peroxide formation in iron-induced epileptogenic foci of rats. Neurosciences 1995; 21: 23–9

    CAS  Google Scholar 

  128. Mori A, Noda Y, Packer L. The anticonvulsant zonisamide scavenges free radicals. Epilepsy Res 1998; 30: 153–8

    PubMed  CAS  Google Scholar 

  129. Minato H, Kikuta C, Fujitani B, et al. Protective effect of zonisamide, an antiepileptic drug, against transient focal cerebral ischemia with middle cerebral artery occlusion-reperfusion in rats. Epilepsia 1997; 38(9): 975–80

    PubMed  CAS  Google Scholar 

  130. Masuda Y, Karasawa T, Shiraishi Y, et al. 3-Sulfamoylmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug. Pharmacological profile. Arzneimittelforschung 1980; 30: 477–83

    CAS  Google Scholar 

  131. Ito T, Hori M, Kadokawa T. Effects of zonisamide (AD-810) on tungstic acid gel-induced thalamic generalized seizures and conjugated estrogen-induced cortical spike-wave discharge in cats. Epilepsia 1986; 27: 367–74

    PubMed  CAS  Google Scholar 

  132. Gasior M, Ungard JT, Witkin JM. Preclinical evaluation of newly approved and potential antiepileptic drugs against cocaine-induced seizures. J Pharmacol Exp Ther 1999; 290: 1148–56

    PubMed  CAS  Google Scholar 

  133. Marsden AG, Kadir ZA, Hutton JL, et al. The new antiepileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia 1997; 38: 859–80

    Google Scholar 

  134. Schmidt D, Jacob R, Loiseau P, et al. Zonisamide for add-on treatment of refractory partial epilepsy: a European double blind trial. Epilepsy Res 1993; 15: 67–73

    PubMed  CAS  Google Scholar 

  135. Oommen KJ, Mathews S. Zonisamide: Anew antiepileptic drug. Clin Neuropharmacol 1999; 22(4): 192–200

    PubMed  CAS  Google Scholar 

  136. Leppik IE, Willmore LJ, Homan RW, et al. Efficacy and safety of zonisamide: results of a multicenter study. Epilepsy Res 1993; 14: 165–73

    PubMed  CAS  Google Scholar 

  137. Yanai S, Hanai T, Narazaki O. Treatment of infantile spasms with zonisamide. Brain Dev 1999; 21(3): 157–61

    PubMed  CAS  Google Scholar 

  138. Suzuki Y, Nagai T, Ono J, et al. Zonisamide monotherapy in newly diagnosed infantile spasms. Epilepsia 1997; 38(9): 1035–8

    PubMed  CAS  Google Scholar 

  139. Leppik IE. Zonisamide. Epilepsia 1999; 40 Suppl. 5: S23–9

    PubMed  CAS  Google Scholar 

  140. Henry T, Leppik IE, Gumnit RJ, et al. Progressive myoclonus epilepsy treated with zonisamide. Neurology 1998; 38: 928–31

    Google Scholar 

  141. Kyllerman M, Ben-Menachem E. Zonisamide for progressive myoclonus epilepsy: long-term observations in seven patients. Epilepsy Res 1998; 29(2): 109–14

    PubMed  CAS  Google Scholar 

  142. Yagi K, Seino M. Methodological requirements for clinical trials in refractory epilepsies-our experience with zonisamide. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 79–85

    PubMed  CAS  Google Scholar 

  143. Browne TR, Leppik IE, Penry JK, et al. Zonisamide efficacy in long term studies [abstract]. Epilepsia 1997; 38 Suppl. 8: 108

    Google Scholar 

  144. Iinuma K, Minami T, Cho K, et al. Long-term effects of zonisamide in the treatment of epilepsy in children with intellectual disability. J Intellect Disabil Res 1998; 42 Suppl. 1: 68–73

    PubMed  Google Scholar 

  145. Kumagai N, Seki T, Yamawaki H, et al. Monotherapy for childhood epilepsies with zonisamide. Jpn J Psychiatry Neurol 1991; 45: 357–9

    PubMed  CAS  Google Scholar 

  146. Seino M, Miyazaki H, Ito T. Zonisamide. In: Pisani F, Perucca E, Avanzini G, et al., editors. New antiepileptic drugs. New York (NY): Elsevier, 1997: 169–74

    Google Scholar 

  147. Shellenberger K, Beck K, Oida T. Safety of zonisamide in Japanese children [abstract]. Epilepsia 1999; 40 Suppl. 7: 94

    Google Scholar 

  148. Bergen D. Incidence of adverse events is reduced with titrated dosing of Zonegran™ (zonisamide) for partial seizures in the United States [abstract]. Epilepsia 1999; 40 Suppl. 7: 94

    Google Scholar 

  149. Kubota M, Nishi-Nagase M, Sakakihara Y, et al. Zonisamide-induced urinary lithiasis in patients with intractable epilepsy. Brain Dev 2000; 22(4): 230–3

    PubMed  CAS  Google Scholar 

  150. Berent S, Sackellares JC, Giordani B, et al. Zonisamide (CI-912) and cognition: results from preliminary study. Epilepsia 1987; 28: 61–7

    PubMed  CAS  Google Scholar 

  151. Akaho R. The effects of antiepileptic drugs on cognition in normal volunteers. Psychiatry Clin Neurosci 1996; 50: 61–9

    PubMed  CAS  Google Scholar 

  152. Ojemann LM, Crawford CA, Dodrill CB, et al. Language disturbances as a side effect of topiramate and zonisamide therapy [abstract]. Epilepsia 1999; 40 Suppl. 7: 66

    Google Scholar 

  153. Okumura A, Hayakawa F, Kuno K, et al. Oligohidrosis caused by zonisamide. No To Hattatsu 1996; 28: 44–7

    PubMed  CAS  Google Scholar 

  154. Shimoyama R, Ohkubo T, Sugawara K. Monitoring of zonisamide in human breast milk and maternal plasma by solid-phase extraction HPLC method. Biomed Chromatogr 1999; 13: 370–2

    PubMed  CAS  Google Scholar 

  155. Kondo T, Kaneko S, Amano Y, et al. Preliminary report on teratogenic effects of zonisamide in the offspring of treated women with epilepsy. Epilepsia 1996; 37(12): 1242–4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Schachter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schachter, S.C. The Next Wave of Anticonvulsants. Mol Diag Ther 14, 229–249 (2000). https://doi.org/10.2165/00023210-200014030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200014030-00005

Keywords

Navigation