Skip to main content
Log in

The Contrast and Convergence of Bayesian and Frequentist Statistical Approaches in Pharmacoeconomic Analysis

  • Review Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

The application of Bayesian statistical analyses has been facilitated in recent years by methodological advances and an increasing complexity necessitated within research. Substantial debate has historically accompanied this analytic approach relative to the frequentist method, which is the predominant statistical ideology employed in clinical studies. While the essence of the debate between the two branches of statistics centres on differences in the use of prior information and the definition of probability, the ramifications involve the breadth of research design, analysis and interpretation. The purpose of this paper is to discuss the application of frequentist and Bayesian statistics in the pharmacoeconomic assessment of healthcare technology. A description of both paradigms is offered in the context of potential advantages and disadvantages, and applications within pharmacoeconomics are briefly addressed. Additional considerations are presented to stimulate further development and to direct appropriate applications of each method such that the integrity and robustness of scientific inference be strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Bayes RT. An essay toward solving a problem in the doctrine of chances. Phil Trans Royal Soc London 1763; 53: 370–418

    Article  Google Scholar 

  2. Efron B. Controversies in the foundation of statistics. Am Math Month 1978; 85: 231–246

    Article  Google Scholar 

  3. Edwards A. A history of likelihood. Internat Stat Rev 1974; 42: 9–15

    Article  Google Scholar 

  4. Kennedy P. A guide to econometrics. 5th ed. Cambridge (MA): MIT Press, 2003

    Google Scholar 

  5. Spiegelhalter DJ, Myles JP, Jones DR, et al. An introduction to Bayesian methods in health technology assessment. BMJ 1999; 319: 508–512

    Article  PubMed  CAS  Google Scholar 

  6. Speigelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evaluation. West Sussex (UK): John Wiley & Sons, 2004

    Google Scholar 

  7. Lilford RJ, Braunholtz D. Who’s afraid of Thomas Bayes? J Epidem Community Health 2000; 54: 731–739

    Article  CAS  Google Scholar 

  8. Shih YCT. Bayesian approach in pharmacoeconomics: relevance to decision-makers. Expert Rev Pharmacoeconomics Outcomes Res 2003; 3: 237–250

    Article  Google Scholar 

  9. Dunson DB. Practical advantages of Bayesian analysis of epidemiologic data. Am J Epidem 2001; 153: 1222–1226

    Article  CAS  Google Scholar 

  10. Spiegelhalter DJ. Incorporating Bayesian ideas into health-care evaluation. Stat Sci 2004; 19: 156–174

    Article  Google Scholar 

  11. Stangl DK, Berry DA. Bayesian statistics in medicine: where are we and where should we be going? Sankhya: Indian J Stat 1998; 60: 176–195

    Google Scholar 

  12. Lilford RJ. The statistical basis of public policy: a paradigm shift is overdue. BMJ 1996; 313: 603–607

    Article  PubMed  CAS  Google Scholar 

  13. Wilson G. Tides of change: is Bayesianism the new paradigm in statistics? J Stat Plan Inference 2003; 113: 371–374

    Article  Google Scholar 

  14. Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Stat Sci 2004; 19: 58–80

    Article  Google Scholar 

  15. Wilkinson GN. On resolving the controversy in statistical inference [with discussion]. J Royal Stat Soc Series B (Methodology) 1977; 39: 119–171

    Google Scholar 

  16. Goodman SN. Toward evidence-based medical statistics: 1. The p-value fallacy. Ann Intern Med 1999; 130: 995–1004

    PubMed  CAS  Google Scholar 

  17. Emerson SS, Kittelson JM, Gillen DL. Bayesian evaluation of group sequential clinical trial designs. University of Washington Biostatistics Working Papers Series: paper 242 [online]. Available from URL: http://www.bepress.com/uwbiostat/paper242 [Accessed 2005 Jul 4]

  18. Bland JM, Altman DG. Bayesians and frequentists. BMJ 1998; 317: 1151

    Article  PubMed  CAS  Google Scholar 

  19. Freund JE. Mathematical statistics. 2nd ed. Englewood Cliffs (NJ): Prentice Hall, 1971

    Google Scholar 

  20. Grinstead CM, Snell JL. Introduction to probability. 2nd ed. Washington, DC: American Mathematical Society, 1997

    Google Scholar 

  21. Dorfman JH. Bayesian economics through numerical methods: a guide to decision-making with prior information. New York (NY): Springer, 1997

    Google Scholar 

  22. Jeffreys H. Theory of probability. 3rd ed. Oxford (UK): Clarendon, 1961

    Google Scholar 

  23. O’Hagan A, Luce B. A primer on Bayesian analysis in health economics and outcomes research. Sheffield (UK): Centre for Bayesian Statistics in Health Economics, 2003

    Google Scholar 

  24. Skrepnek GH. Regression methods in the empirical analysis of health care data. J Manag Care Pharm 2005; 11: 240–251

    PubMed  Google Scholar 

  25. Casella G, Berger RL. Statistical inference. 2nd ed. Belmont (CA): Duxbury, 2001

    Google Scholar 

  26. Woolridge JM. Introductory econometrics: a modern approach. 2nd ed. Mason (OH): Thomson Southwestern, 2003

    Google Scholar 

  27. Neyman J. Frequentist probability and frequentist statistics. Synthese 1977; 36: 97–131

    Article  Google Scholar 

  28. Skrepnek GH. Cost-effectiveness analysis. In: Bootman JL, Townsend RJ, McGhan WF, editors. Principles of pharmacoeconomics. 3rd ed. Cincinnati (OH): W Harvey Whitney, 2005

    Google Scholar 

  29. Sterne JAC, Smith GD. Sifting the evidence: what’s wrong with significance tests. BMJ 2001; 322: 226–231

    Article  PubMed  CAS  Google Scholar 

  30. Berger JO, Sellke T. Testing a point null hypothesis: the irreconcilability of p-values and evidence (with discussion). J Am Stat Assoc 1987; 82: 112–139

    Google Scholar 

  31. Cowles M, Davis C. On the origins of the.05 level of statistical significance. Am Psychol 1982; 37: 553–558

    Article  Google Scholar 

  32. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 6: 65–70

    Google Scholar 

  33. Rothman KJ. No adjustments needed for multiple comparisons. Epidem 1990; 1: 43–46

    Article  CAS  Google Scholar 

  34. Theil H, Goldberger AS. On pure and mixed statistical estimation in economics. Internat Econ Rev 1961; 2: 65–78

    Article  Google Scholar 

  35. Goodman SN. Toward evidence-based medical statistics: 2. The Bayes Factor. Ann Intern Med 1999; 130: 1005–1013

    PubMed  CAS  Google Scholar 

  36. Good I. Probability and the weighing of evidence. New York (NY): Charles Griffin, 1950

    Google Scholar 

  37. Berry DA. A case for Bayesianism in clinical trials. Stat Med 1993; 12: 1377–1393

    Article  PubMed  CAS  Google Scholar 

  38. DeGroot MH. Optimal statistical decisions. New York (NY): McGraw-Hill, 1970

    Google Scholar 

  39. Cornfield J. Recent methodological contributions to clinical trials. Am J Epidem 1976; 104: 408–421

    CAS  Google Scholar 

  40. Bala MV, Mauskopf J. Estimating the Bayesian loss function: a conjoint analysis approach. Intern J Technol Assess Health Care 2001; 17: 27–37

    Article  CAS  Google Scholar 

  41. Briggs AH. A Bayesian approach to stochastic cost-effectiveness analysis. Health Econ 1999; 8: 257–261

    Article  PubMed  CAS  Google Scholar 

  42. Luce BR, Claxton K. Redefining the analytic approach to pharmacoeconomics. Health Econ 1999; 8: 187–189

    Article  PubMed  CAS  Google Scholar 

  43. Ades AE, Sculpher M, Sutton A, et al. Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics 2006; 24: 1–19

    Article  PubMed  CAS  Google Scholar 

  44. Qin D. Bayesian econometrics: the first twenty years. Econ Theory 1996; 12: 500–516

    Article  Google Scholar 

  45. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984; 6: 721–741

    Article  PubMed  CAS  Google Scholar 

  46. Brooks SP. Markov Chain Monte Carlo method and its application. Statistician 1998; 47: 69–100

    Article  Google Scholar 

  47. Andrieu C, Doucet A, Robert CP. Computational advances for and from Bayesian analysis. Stat Sci 2004; 19: 118–127

    Article  Google Scholar 

  48. Winkler RL. Why Bayesian analysis hasn’t caught on in health-care decision making. Internat J Tech Assess Health Care 2001; 17: 56–66

    Article  CAS  Google Scholar 

  49. Gill CJ, Sabin L, Schmid CH. Why clinicians are natural Bayesians. BMJ 2005; 330: 1080–1083

    Article  PubMed  Google Scholar 

  50. Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci 1982; 71: 1344–1348

    Article  PubMed  CAS  Google Scholar 

  51. Ashby D, Smith AFM. Evidence-based medicine as Bayesian decision-making. Stat Med 2000; 19: 3291–3305

    Article  PubMed  CAS  Google Scholar 

  52. Bernardo JM, Smith AFM. Bayesian theory. New York (NY): Wiley, 1994

    Book  Google Scholar 

  53. The GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329: 673–682

    Article  Google Scholar 

  54. Brophy JM, Joseph L. Placing trials in context using Bayesian analysis. JAMA 1995; 273: 871–875

    Article  PubMed  CAS  Google Scholar 

  55. Troiani JS, Carlin BP. Comparison of Bayesian, classical, and heuristic approaches in identifying acute disease events in lung transplant recipients. Stat Med 2004; 23: 803–824

    Article  PubMed  Google Scholar 

  56. Delaney BC, Holder RL, Allan TF, et al. A comparison of Bayesian and maximum likelihood methods to determine the performance of a point of care test for Heliobacter pylori in the office setting. Med Decis Making 2003; 23: 21–30

    Article  PubMed  Google Scholar 

  57. Bloom BS, de Pouvourville N, Libert S. Classic or Bayesian research design and analysis: does it make a difference? Intern J Technol Assess Health Care 2002; 18: 120–126

    Google Scholar 

  58. Spiegelhalter D, Myles J, Jones D, et al. Bayesian methods in health technology assessment: a review. Health Technol Assess 2000; 4: 1–130

    PubMed  CAS  Google Scholar 

  59. Kadane JB. Prime time for Bayes. Control Clin Trial 1995; 16: 313–318

    Article  CAS  Google Scholar 

  60. Fisher LD. Comments on Bayesian and frequentist analysis and interpretation of clinical trials. Control Clin Trial 1996; 17: 423–434

    Article  CAS  Google Scholar 

  61. Urbach P. The value of randomization and control in clinical trials. Stat Med 1993; 12: 1421–1431

    Article  PubMed  CAS  Google Scholar 

  62. Papineau D. The virtues of randomization. Brit J Phil Sci 1994; 455: 437–450

    Article  Google Scholar 

  63. Berry DA. Bayesian statistics and the efficiency and ethics of clinical trials. Stat Sci 2004; 19: 175–187

    Article  Google Scholar 

  64. Breslow N. Biostatistics and Bayes. Stat Sci 1990; 5: 269–284

    Article  Google Scholar 

  65. Pocock S. The combination of randomized and historical controls in clinical trials. J Chron Dis 1976; 29: 175–188

    Article  PubMed  CAS  Google Scholar 

  66. International Conference on Harmonization E9 Expert Working Group. Statistical principles for clinical trials: ICH harmonized tripartite guideline. Stat Med 1999; 18: 1905–1942

    Google Scholar 

  67. Senn S. Consensus and controversy in pharmaceutical statistics (with discussion). Statistician 2000; 49: 135–176

    Article  Google Scholar 

  68. Campbell G. A regulatory perspective for Bayesian clinical trials. Washington, DC: US FDA, 1999

    Google Scholar 

  69. Briggs AH. A Bayesian approach to stochastic cost-effectiveness analysis: an illustration and application to blood pressure control in type 2 diabetes. Internat J Technol Assess Health Care 2001; 17: 69–82

    Article  CAS  Google Scholar 

  70. Fryback DC, Chinnis JOP, Ulvila JW. Bayesian cost-effectiveness analysis: an example using the GUSTO trial. Internat J Technol Assess Health Care 2001; 17: 83–97

    Article  CAS  Google Scholar 

  71. Heitjan DF, Moskowitz AJ, Whang W. Bayesian estimation of cost-effectiveness ratios from clinical trials. Health Econ 1999; 8: 191–201

    Article  PubMed  CAS  Google Scholar 

  72. O’Hagan A, Stevens JW, Montmartin J. Inference for the cost-effectiveness acceptability curve and cost-effectiveness ratio. Pharmacoeconomics 2000; 17: 339–349

    Article  PubMed  Google Scholar 

  73. O’Hagan A, Stevens JW, Montmartin J. Bayesian cost-effectiveness analysis from clinical trial data. Stat Med 2001; 20: 733–753

    Article  PubMed  Google Scholar 

  74. O’Hagan A, Stevens JW. A framework for cost-effectiveness analysis from clinical trial data. Health Econ 2001; 10: 303–305

    Article  PubMed  Google Scholar 

  75. O’Hagan A, Stevens JW. Bayesian methods for design and analysis of cost-effectiveness trials in the evaluation of healthcare technologies. Stat Meth Med Res 2002; 11: 469–490

    Article  Google Scholar 

  76. van Hout BA, Al MJ, Gordon GS, et al. Costs, effects, and C/E ratios alongside a clinical trial. Health Econ 1994; 3: 309–319

    Article  PubMed  Google Scholar 

  77. Stinnett AA, Mullahy J. A new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making 1998; 18: 68s–80s

    Article  Google Scholar 

  78. Lothgren M, Zethraeus N. Definition, interpretation and calculation of cost-effectiveness acceptability curves. Health Econ 2000; 9: 623–630

    Article  PubMed  CAS  Google Scholar 

  79. Berger J, Phillipe A, Robert C. Estimation of quadratic functions: noninformative priors for non-centrality parameters. Statist Sinica 1998; 8: 359–376

    Google Scholar 

  80. Berger J. Statistical decision theory and Bayesian analysis. 2nd ed. New York (NY): Springer, 1985

    Google Scholar 

  81. Eaton ML. Group invariance applications in statistics. Hayward (CA): IMS, 1989

    Google Scholar 

  82. Robert CP. The Bayesian choice. 2nd ed. New York (NY): Springer, 2001

    Google Scholar 

  83. Chambers ML. A simple problem with strikingly different frequentist and Bayesian solutions. J Royal Stat Soc Series B (Methodological) 1970; 32: 278–282

    Google Scholar 

  84. Bartholomew DJ. A comparison of some Bayesian and frequentist inferences. Biometrika 1965; 52: 19–35

    Google Scholar 

  85. Bartholomew DJ. A comparison of frequentist and Bayesian approaches to inference with prior knowledge: foundations of statistical inference (Proc Sympos, Univ Waterloo, Waterloo, Ont, 1970). Toronto (ON): Holt, Rinehart, and Winston, 1970: 34

  86. Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps: a non-parametric approach to confidence interval estimation. Health Econ 1997; 6: 327–340

    Article  PubMed  CAS  Google Scholar 

  87. Spiegelhalter DJ, Best NG. Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness analyses. Stat Med 2003; 22: 3687–3709

    Article  PubMed  Google Scholar 

  88. Cooper NJ, Abrams KR, Sutton AJ, et al. Use of Bayesian methods for Markov modeling in cost-effectiveness analysis: an application to taxane use in advanced breast cancer [technical report, 02-02]. Leicester (UK): University of Leicester, 2002

    Google Scholar 

  89. Sendi PP, Craig BA, Meier G, et al. Cost-effectiveness of azithromycin for preventing Mycobacterium avium complex infection in HIV-positive patients in the era of highly active antiretroviral therapy. J Antimicrob Chemo 1999; 44: 811–817

    Article  CAS  Google Scholar 

  90. Matchar DB, Samsa GP, Matthews JR, et al. The stroke prevention policy model: linking evidence and clinical decisions. Ann Intern Med 1997; 127: 704–711

    PubMed  CAS  Google Scholar 

  91. Al MJ, van Hout BA. A Bayesian approach to economic analyses of clinical trials: the case of stenting versus balloon angioplasty. Health Econ 2000; 9: 599–609

    Article  PubMed  CAS  Google Scholar 

  92. Samsa GP, Reutter RA, Parmigiani G, et al. Performing cost-effectiveness analysis by integrating randomised trial data with a comprehensive decision model: application to treatment of acute ischemic stroke. Clin Epidem 1999; 52: 259–271

    Article  CAS  Google Scholar 

  93. Heitjan DF, Li H. Bayesian estimation of cost-effectiveness: an importance-sampling approach. Health Econ 2004; 13: 191–198

    Article  PubMed  Google Scholar 

  94. Craig BA, Fryback DG, Klein R, et al. A Bayesian approach to modeling the natural history of a chronic condition from observations with intervention. Stat Med 1999; 18: 1355–1371

    Article  PubMed  CAS  Google Scholar 

  95. Howard RA. Information value theory. IEEE Trans System Sci Cybernetics 1966; SCC2: 22–26

    Article  Google Scholar 

  96. Howard RA. Value of information lotteries. IEEE Trans System Sci Cybernetics 1967; SCC3: 24–60

    Google Scholar 

  97. Claxton K, Neumann PJ, Araki S, et al. Bayesian value-of-information analysis. Internat J Technol Assess Health Care 2001; 17: 38–55

    Article  CAS  Google Scholar 

  98. Claxton K, Posnett J. An economic approach to clinical trial design and research priority-setting. Health Econ 1996; 5: 513–524

    Article  PubMed  CAS  Google Scholar 

  99. Claxton K. Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals. Health Econ 1999; 8: 269–274

    Article  PubMed  CAS  Google Scholar 

  100. Neumann PJ, Claxton K, Weinstein MC. The FDA’s regulation of health economic information. Health Affairs 2000; 19: 129–137

    Article  PubMed  CAS  Google Scholar 

  101. Claxton K, Schulper M, Drummond M. A rational framework for decision making by the National Institute for Clinical Excellence (NICE). Lancet 2002; 360: 711–715

    Article  PubMed  Google Scholar 

  102. Fenwick E, Claxton K, Schulper M. Representing uncertainty: the role of cost-effectiveness acceptability curves. Health Econ 2001; 10: 779–787

    Article  PubMed  CAS  Google Scholar 

  103. Felli JC, Hazen GB. A Bayesian approach to sensitivity analyses. Health Econ 1999; 8: 263–268

    Article  PubMed  CAS  Google Scholar 

  104. Parmigiani G. Modeling in medical decision making: a Bayesian approach. Hoboken (NJ): John Wiley & Sons, 2002

    Google Scholar 

  105. Cooper NJ, Sutton AJ, Abrams KR, et al. Comprehensive decision analytic modeling in economic evaluation: a Bayesian approach. Health Economics 2004; 13: 203–226

    Article  PubMed  Google Scholar 

  106. Harrell F, Shih YCT. Using full probability models to compute probabilities of actual interest to decision makers. Internat J Technol Assess Health Care 2001; 17: 17–26

    Article  Google Scholar 

  107. Stangl DK. Bridging the gap between statistical analysis and decision making in public health research. Stat Med 2005; 24: 503–511

    Article  PubMed  Google Scholar 

  108. Eddy DM, Hasselblad V, Schachter RD. Meta-analysis by the confidence profile method: the statistical synthesis of evidence. Boston (MA): Academic Press, 1992

    Google Scholar 

  109. Briggs AH. Handling uncertainty in cost-effectiveness models. Pharmacoeconomics 2000; 17: 479–500

    Article  PubMed  CAS  Google Scholar 

  110. Vanness DJ, Kim WR. Bayesian estimation, simulation and uncertainty analysis: the cost-effectiveness of ganciclovir prophylaxis in liver transplantation. Health Econ 2002; 11: 551–566

    Article  PubMed  Google Scholar 

  111. Brennan P. Statistical basis of public policy: epidemiology does not need Bayesian inference [letter]. BMJ 1997; 314: 72

    Article  PubMed  CAS  Google Scholar 

  112. Kass RE, Greenhouse JB. A Bayesian perspective: comment on’ Investigating therapies of potentially great benefit: ECMO’ by JH Ware. Statist Sci 1989; 4: 310–317

    Article  Google Scholar 

  113. Lindley DV. Theory and practice of Bayesian statistics. Statistician 1983; 32: 1–11

    Article  Google Scholar 

  114. Dawid AP, Stone M, Zidek JV. Marginalization paradoxes in Bayesian and structural inference (with discussion). J Royal Stat Soc Series B (Methodological) 1973; 35: 189–233

    Google Scholar 

  115. O’Neill R. Early stopping rules workshop: conclusions. Stat Med 1994; 13: 1493–1494

    Article  Google Scholar 

  116. Senn S. Statistical issues in drug development. New York (NY): John Wiley & Sons, 2002

    Google Scholar 

  117. van der Wilt GJ, Rovers M, Straatman H, et al. Policy relevance of Bayesian statistics overestimated? Intern J Technol Assess Health Care 2004; 20: 488–492

    Google Scholar 

  118. Richardson S, Leblond L. Some comments on misspecification of priors in Bayesian modeling of measurement error problems. Stat Med 1997; 16: 203–213

    Article  PubMed  CAS  Google Scholar 

  119. Wald A. Statistical decision functions. New York (NY): Wiley, 1950

    Google Scholar 

  120. Ho CH. Some frequentist properties of a Bayesian method in clinical trials. Biom J 1991; 33: 735–740

    Article  Google Scholar 

  121. Griffiths WE. Bayesian econometrics and how to get rid of those wrong signs. Rev Market Agricult Econ 1988; 56: 36–56

    Google Scholar 

  122. Sheingold SH. Can Bayesian methods make data and analyses more relevant to decision makers? Internat J Tech Assess Health Care 2001; 17: 114–122

    Article  CAS  Google Scholar 

  123. Lindley DV. Is our view of Bayesian statistics too narrow? (with discussion). Bayesian Stat 1992; 4: 1–15

    Google Scholar 

  124. Greenland S. Response: Bayesian perspectives for epidemiological research [comment]. Int J Epidemiol 2006; 35: 777–778

    Article  Google Scholar 

  125. Greenland S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int J Epidemiol 2006; 35: 765–775

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. The author has no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant H. Skrepnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrepnek, G.H. The Contrast and Convergence of Bayesian and Frequentist Statistical Approaches in Pharmacoeconomic Analysis. Pharmacoeconomics 25, 649–664 (2007). https://doi.org/10.2165/00019053-200725080-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-200725080-00003

Keywords

Navigation