Skip to main content
Log in

Detection of DNA-Recombinant Human Epoetin-Alfa as a Pharmacological Ergogenic Aid

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The use of DNA-recombinant human epoetin-alfa (rhEPO) as a pharmacological ergogenic aid for the enhancement of aerobic performance is estimated to be practised by at least 3 to 7% of elite endurance sport athletes. rhEPO is synthesised from Chinese hamster ovary cells, and is nearly identical biochemically and immunologically to endogenous epoetin-alfa (EPO). In a clinical setting, rhEPO is used to stimulate erythrocyte production in patients with end-stage renal disease and anaemia. A limited number of human studies have suggested that rhEPO provides a significant erythropoietic and ergogenic benefit in trained individuals as evidenced by increments in haemoglobin, haematocrit, maximal oxygen uptake (V̇O2max) and exercise endurance time.

The purpose of this review is to summarise the various technologies and methodologies currently available for the detection of illicit use of rhEPO in athletes. The International Olympic Committee (IOC) banned the use of rhEPO as an ergogenic aid in 1990. Since then a number of methods have been proposed as potential techniques for detecting the illegal use of rhEPO. Most of these techniques use indirect markers to detect rhEPO in blood samples. These indirect markers include macrocytic hypochromatic erythrocytes and serum soluble transferrin receptor (sTfr) concentration. Another indirect technique uses a combination of 5 markers of enhanced erythropoiesis (haematocrit, reticulocyte haematocrit, percentage of macrocytic red blood cells, serum EPO, sTfr) to detect rhEPO. The electrophoretic mobility technique provides a direct measurement of urine and serum levels of rhEPO, and is based on the principle that the rhEPO molecule is less negatively charged versus the endogenous EPO molecule. Isoelectric patterning/ focusing has emerged recently as a potential method for the direct analysis of rhEPO in urine.

Among these various methodologies, the indirect technique that utilises multiple markers of enhanced erythropoiesis appears to be the most valid, reliable and feasible protocol currently available for the detection of rhEPO in athletes. In August 2000, the IOC Medical Commission approved this protocol known as the ‘ON model’, and it was subsequently used in combination with a second, confirmatory test (isoelectric patterning) to detect rhEPO abusers competing in the 2000 Sydney Summer Olympics. This combined blood and urine test was approved with modifications by the IOC in November 2001 for use in the 2002 Salt Lake City Winter Olympics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berglund B, Hemmingsson P, Birgegard G. Detection of autologous blood transfusions in cross-country skiers. Int J Sports Med 1987; 8: 66–70

    Article  PubMed  CAS  Google Scholar 

  2. Klein HG. Blood transfusion and athletics. N Engl J Med 1985; 312: 854–6

    Article  PubMed  CAS  Google Scholar 

  3. Scarpino V, Arrigo A, Benzi G, et al. Evaluation of prevalence of doping among Italian athletes. Lancet 1990; 336: 1048–50

    Article  PubMed  CAS  Google Scholar 

  4. Videman T, Lereim I, Hemmingsson P, et al. Changes in hemoglobin values in elite cross-country skiers from 1987 to 1999. Scand J Med Sci Sports 2000; 10: 98–102

    Article  PubMed  CAS  Google Scholar 

  5. Cramer RB. Olympic cheating: the inside story of illicit doping and the U.S. cycling team. Rolling Stone 1985 Feb 14: 25–30

    Google Scholar 

  6. Mottram DR. Banned drugs in sport. Sports Med 1999; 27: 1–10

    Article  PubMed  CAS  Google Scholar 

  7. Gatlin LD. Seeking an edge, cheating US skier places Nordic world on edge. Christ Sci Monit 1988 Jan; 22: 18

    Google Scholar 

  8. A sport in shame. Sports Illustrated 1998 Jul 27: 28, 33

  9. Fisher LM. Stamina-building drug linked to athletes’ deaths. New York Times 1991 May 19: 22

    Google Scholar 

  10. Pelkey C. Drug scandal shakes cycling. Velo News 1998 Aug 17: 16, 19

    Google Scholar 

  11. Wilcockson J. The Tour in peril. Velo News 1998 Aug 17: vi–vii, xiv

  12. Swift EM. Drug pedaling. Sports Illustrated 1999 Jul 5: 60–5

    Google Scholar 

  13. Reuters Ltd. Nordic skiing — Finnish doping controversy deepens. Reuters Ltd [online]. Available from URL: www.reuters.com [Accessed 2001 Feb 27]

  14. Dugal R, Bertrand M. IOC Medical Commission booklet. Montreal: Committee Orginisateur des Jeux Olympiques, 1976: 1–31

    Google Scholar 

  15. United States Olympic Committee guide to prohibited substances and methods. Colorado Springs (CO): United States Olympic Committee, 1998: 1–2

    Google Scholar 

  16. de Merode A, Committee Internationale Olympique. International Olympic Committee Medical Commission prohibited classes of substances and methods of doping, 2000 Feb 15 [letter]. In: Bowers LD, Bailey SM, Podraza J. United States Anti-Doping Agency guide to prohibited classes of substances and prohibited methods of doping. Colorado Springs (CO): US Anti-Doping Agency, 2000: 3

    Google Scholar 

  17. American College of Sports Medicine Position Stand. The use of blood doping as an ergogenic aid. Med Sci Sports Exerc 1996; 28 (3): i-viii

    Google Scholar 

  18. Berglund B, Birgegard G, Wide L, et al. Effects of blood transfusions on some hematological variables in endurance athletes. Med Sci Sports Exerc 1989; 21: 637–42

    PubMed  CAS  Google Scholar 

  19. Berglund B, Hemmingsson P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int J Sports Med 1987; 8: 231–3

    Article  PubMed  CAS  Google Scholar 

  20. Buick FJ, Gledhill N, Froese AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48: 636–42

    PubMed  CAS  Google Scholar 

  21. Celsing F, Svedenhag J, Pilhstedt P, et al. Effects of anemia and stepwise-induced polycythemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol Scand 1987; 31: 47–54

    Article  Google Scholar 

  22. Ekblom B, Goldbarg AN, Gullbring B. Response to exercise after blood loss and reinfusion. J Appl Physiol 1972; 33: 175–80

    PubMed  CAS  Google Scholar 

  23. Ekblom B, Wilson G, Astrand P-O. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 1976; 40: 379–83

    PubMed  CAS  Google Scholar 

  24. Gledhill N. Blood doping and related issues: a brief review. Med Sci Sports Exerc 1982; 14: 183–9

    PubMed  CAS  Google Scholar 

  25. Gledhill N. The influence of altered blood volume and oxygen transport capacity on aerobic performance. Exerc Sports Sci Rev 1985; 13: 75–93

    Article  CAS  Google Scholar 

  26. Gledhill N, Warburton D, Jamnik V. Haemoglobin, blood volume, cardiac function, and aerobic power. Can J Appl Physiol 1999; 24: 54–65

    Article  PubMed  CAS  Google Scholar 

  27. Robertson RJ, Gilcher R, Metz KF, et al. Effect of induced erythrocythemia on hypoxia tolerance during physical exercise. J Appl Physiol 1982; 53: 490–5

    Article  PubMed  CAS  Google Scholar 

  28. Robertson RJ, Gilcher R, Metz KF, et al. Hemoglobin concentration and aerobic work capacity in women following induced erythrocythemia. J Appl Physiol 1984; 57: 568–75

    PubMed  CAS  Google Scholar 

  29. Sawka MN, Dennis RC, Gonzalez RR, et al. Influence of polycythemia on blood volume and thermoregulation during exercise-heat stress. J Appl Physiol 1987; 62: 912–8

    Article  PubMed  CAS  Google Scholar 

  30. Sawka MN, Young AJ, Muza SR, et al. Erythrocyte infusion and maximal aerobic power: an examination of modifying factors. JAMA 1987; 257: 1496–9

    Article  PubMed  CAS  Google Scholar 

  31. Spriet LL, Gledhill N, Froese AB, et al. The effects of induced erythrocythemia on central circulation and oxygen transport during maximal exercise. Med Sci Sports Exerc 1980; 12: 122–3

    Google Scholar 

  32. Spriet LL, Gledhill N, Froese AB, et al. Effect of graded erythrocythemia on cardiovascular and metabolic responses to exercise. J Appl Physiol 1986; 61: 1942–8

    PubMed  CAS  Google Scholar 

  33. Thompson JM, Stone JA, Ginsburg AD, et al. Oxygen transport during exercise following blood reinfusion. J Appl Physiol 1982; 53: 1213–9

    Google Scholar 

  34. Williams MH, Goodwin AR, Perkins R, et al. Effect of blood reinjection upon endurance capacity and heart rate. Med Sci Sports 1973; 5: 181–6

    PubMed  CAS  Google Scholar 

  35. Williams MH, Lindhjem M, Schuster R. The effect of blood infusion upon endurance capacity and ratings of perceived exertion. Med Sci Sports 1978; 10: 113–8

    PubMed  CAS  Google Scholar 

  36. Williams MH, Wesseldine S, Somma T, et al. The effect of induced erythrocythemia upon 5-mile treadmill run time. Med Sci Sports Exerc 1981; 13: 169–75

    PubMed  CAS  Google Scholar 

  37. Pace N, Lozner EL, Consolazio WV, et al. The increase in hypoxia tolerance of normal men accompanying the polycythemia induced by transfusion of erythrocytes. Am J Physiol 1947; 148: 152–63

    PubMed  CAS  Google Scholar 

  38. Adamson JW, Vapnek D. Recombinant erythropoietin to improve athletic performance. N Engl J Med 1991; 324: 698–9

    Article  PubMed  CAS  Google Scholar 

  39. Scott WC. The abuse of erythropoietin to enhance athletic performance. JAMA 1990; 264: 1660

    Article  PubMed  CAS  Google Scholar 

  40. Snell PG. rHuEPO: sport’s newest drug threat. Orthop Rev 1992; 21: 113–6

    PubMed  CAS  Google Scholar 

  41. Zorpette G. All doped up and going for the gold. Scientific American 2000 May: 20–2

  42. Cazzola M, Mercuriali F, Brugnara C. Use of recombinant human erythropoietin outside the setting of uremia. Blood 1997; 89: 4248–67

    PubMed  CAS  Google Scholar 

  43. Simon TL. Induced erythrocythemia and athletic performance. Semin Hematol 1994; 31: 128–33

    PubMed  CAS  Google Scholar 

  44. Catlin DH, Murray TH. Performance-enhancing drugs, fair competition, and Olympic sport. JAMA 1996; 276: 231–7

    Article  PubMed  CAS  Google Scholar 

  45. Porter DL, Goldberg MA. Physiology of erythropoietin production. Semin Hematol 1994; 31: 112–21

    PubMed  CAS  Google Scholar 

  46. Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. Eur J Biochem 1992; 210: 649–63

    Article  PubMed  CAS  Google Scholar 

  47. Ou LC, Salceda S, Schuster SJ, et al. Polycythemic responses to hypoxia: molecular and genetic mechanisms of chronic mountain sickness. J Appl Physiol 1998; 84: 1242–51

    PubMed  CAS  Google Scholar 

  48. Richalet JP, Souberbielle JC, Antezana, AM, et al. Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am J Physiol 1994; 266 (3 Pt 2): R756-R764

    Google Scholar 

  49. Thein LA, Thein JM, Landry GL. Ergogenic aids. Phys Ther 1995; 75: 426–39

    PubMed  CAS  Google Scholar 

  50. Bell C. Morphology of the erythron. In: Bick RL, editor. Hematology: clinical and laboratory practice. Vol. I. St Louis (MO): Mosby, 1996: 163–83

    Google Scholar 

  51. Jelkmann W. Biology of erythropoietin. Clin Invest 1994; 72 (6 Suppl.): S3-S10

    CAS  Google Scholar 

  52. Markham A, Bryson HM. Epoetin alfa. Drugs 1995; 49: 232–54

    Article  PubMed  CAS  Google Scholar 

  53. Flaharty KK, Caro J, Erslev A, et al. Pharmacokinetics and erythropoietic response to human erythropoietin in healthy men. Clin Pharmacol Ther 1990; 47: 557–64

    Article  PubMed  Google Scholar 

  54. Klausen T, Flemming D, Hippe E, et al. Diurnal variations of serum erythropoietin in trained and untrained subjects. Eur J Appl Physiol 1993; 67: 545–8

    Article  CAS  Google Scholar 

  55. Klausen T, Poulsen TD, Fogh-Andersen N, et al. Diurnal variations of serum erythropoietin at sea level and altitude. Eur J Appl Physiol 1996; 72: 297–302

    Article  CAS  Google Scholar 

  56. Roberts D, Smith DJ. Erythropoietin does not demonstrate circadian rhythm in healthy men. J Appl Physiol 1996; 80: 847–51

    PubMed  CAS  Google Scholar 

  57. Bodary PF, Pate RR, Wu QF, et al. Effects of acute exercise on plasma erythropoietin levels in trained runners. Med Sci Sports Exerc 1999; 31: 543–6

    Article  PubMed  CAS  Google Scholar 

  58. Gareau R, Caron C, Brisson GR. Exercise duration and serum erythropoietin level. Horm Metab Res 1991; 23: 355

    Article  PubMed  CAS  Google Scholar 

  59. Gareau R, Gagnon MG, Thellend C, et al. Transferrin soluble receptor: a possible probe for detection of erythropoietin abuse by athletes. Horm Metab Res 1994; 26: 311–2

    Article  PubMed  CAS  Google Scholar 

  60. Remacha AF, Ordonez J, Barcelo MJ, et al. Evaluation of erythropoietin in endurance runners. Haematologica 1994; 79: 350–2

    PubMed  CAS  Google Scholar 

  61. Schmidt W, Eckhardt KU, Hilgendorf A, et al. Effect of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level. Int J Sports Med 1991; 12: 457–61

    Article  PubMed  CAS  Google Scholar 

  62. Weight LM, Alexander D, Elliot T, et al. Erythropoietic adaptations to endurance training. Eur J Appl Physiol 1992; 64: 444–8

    Article  CAS  Google Scholar 

  63. Berglund B, Fleck SJ, Kearney JT, et al. Serum erythropoietin in athletes at moderate altitude. Scand J Med Sci Sports 1992; 2: 21–5

    Article  Google Scholar 

  64. Berglund B, Birgegard G, Hemmingsson P. Serum erythropoietin in cross-country skiers. Med Sci Sports Exerc 1988; 20: 208–9

    Article  PubMed  CAS  Google Scholar 

  65. Roberts D, Schuh D, Smith DJ. Application of a modified INCSTAR Epo-Trac 125/RIA for measurement of serum erythropoietin concentration in elite athletes. Clin Biochem 1995; 28: 573–80

    Article  PubMed  CAS  Google Scholar 

  66. Woodland L. Lethal injection. Bicycling 1991; 32: 80–1

    Google Scholar 

  67. Eschbach JW, Egrie JC, Downing MR, et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined Phase I and II clinical trial. N Engl J Med 1987; 316: 73–8

    Article  PubMed  CAS  Google Scholar 

  68. Jensen JD, Madsen JK, Jensen LW, et al. Reduced production, absorption, and elimination of erythropoietin in uremia compared with healthy volunteers. J Am Soc Nephrol 1994; 5: 177–85

    PubMed  CAS  Google Scholar 

  69. McMahon FG, Vargas R, Ryan M, et al. Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy volunteers. Blood 1990; 76: 1718–22

    PubMed  CAS  Google Scholar 

  70. Salmonson T, Danielson BG, Wikstrom B. The pharmacokinetics of recombinant human erythropoietin after intravenous and subcutaneous administration of healthy subjects. Br J Clin Pharmacol 1990; 29: 709–13

    Article  PubMed  CAS  Google Scholar 

  71. Singbartl G. Adverse events of erythropoietin in long-term and in acute/short-term treatment. Clin Invest 1994; 72 (6 Suppl.): S36-S43

    Google Scholar 

  72. Spivak JL. Recombinant erythropoietin. Annu Rev Med 1993; 44: 243–53

    Article  PubMed  CAS  Google Scholar 

  73. Cazzola M. A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica 2000; 85: 521–3

    Google Scholar 

  74. Urra JM, de la Torre M, Alcazar R, et al. Rapid method for detection of anti-recombinant human erythropoietin antibodies as a new form of erythropoietin resistance. Clin Chem 1997; 43: 848–9

    PubMed  CAS  Google Scholar 

  75. Souillard A, Audran M, Bressolle F, et al. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes. Blood sampling and doping control. Br J Clin Pharmacol 1996; 42: 355–64

    Article  PubMed  CAS  Google Scholar 

  76. Lavoie C, Diguet A, Milot M, et al. Erythropoietin (rHuEPO) doping: effects of exercise on anaerobic metabolism in rats. Int J Sports Med 1998; 19: 281–6

    Article  PubMed  CAS  Google Scholar 

  77. Verbrugge DJ, Goodnough LT. The effect of recombinant human erythropoietin treatment on the endurance performance of Sprague-Dawley rats. Scand J Clin Lab Invest 1994; 54: 55–9

    Article  PubMed  CAS  Google Scholar 

  78. MacDougall IC, Lewis NP, Saunders MJ, et al. Long term cardiorespiratory effects of amelioration of renal anemia by erythropoietin. Lancet 1990; 335: 489–93

    Article  PubMed  CAS  Google Scholar 

  79. Mayer G, Thum J, Cada EM, et al. Working capacity is increased following recombinant human erythropoietin treatment. Kidny Int 1988; 34: 525–8

    Article  CAS  Google Scholar 

  80. Metra M, Cannella G, La Canna G, et al. Improvement in exercise capacity after correction of anemia in patients with end stage renal failure. Am J Cardiol 1991; 68: 1060–6

    Article  PubMed  CAS  Google Scholar 

  81. Robertson HT, Haley NR, Guthrie M, et al. Recombinant erythropoietin improves exercise capacity in anemic hemodialysis patients. Am J Kidney Dis 1990; 15: 325–32

    PubMed  CAS  Google Scholar 

  82. Audran M, Gareau R, Matecki S, et al. Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sports Exerc 1999; 31: 639–45

    Article  PubMed  CAS  Google Scholar 

  83. Balsom PD, Ekblom B, Sjodin B. Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta Physiol Scand 1994; 150: 455–6

    Article  PubMed  CAS  Google Scholar 

  84. Berglund B, Ekblom B. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Int Med 1991; 229: 125–30

    Article  CAS  Google Scholar 

  85. Birkeland KI, Stray-Gundersen J, Hemmersbach P, et al. Effect of rhEPO administration on serum levels of sTfR and cycling performance. Med Sci Sports Exerc 2000; 32: 1238–43

    Article  PubMed  CAS  Google Scholar 

  86. Ekblom B. Blood doping and erythropoietin. Am J Sports Med 1996; 24 (6 Suppl.): S40-S42

    Google Scholar 

  87. Ekblom B, Berglund B. Effects of erythropoietin administration on maximal aerobic power. Scand J Med Sci Sports 1991; 1: 88–93

    Article  Google Scholar 

  88. Birkeland KI, Hemmersbach P. The future of doping control in athletes. Sports Med 1999; 28: 25–33

    Article  PubMed  CAS  Google Scholar 

  89. Casoni I, Ricci G, Ballarin E, et al. Hematological indices of erythropoietin administration in athletes. Int J Sports Med 1993; 14: 307–11

    Article  PubMed  CAS  Google Scholar 

  90. Bressolle F, Audran M, Gareau R, et al. Population pharmacodynamics for monitoring epoetin in athletes. Clin Drug Invest 1997; 14: 233–42

    Article  CAS  Google Scholar 

  91. Gareau R, Audran M, Baynes RD, et al. Erythropoietin abuse in athletes. Nature 1996; 380: 113

    Article  PubMed  CAS  Google Scholar 

  92. Parisotto R, Wu M, Ashenden M, et al. Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 2001; 86: 128–37

    PubMed  CAS  Google Scholar 

  93. Wide L, Bengtsson C, Berglund B, et al. Detection in blood and urine of recombinant erythropoietin administered to healthy men. Med Sci Sports Exerc 1995; 27: 1569–76

    PubMed  CAS  Google Scholar 

  94. Lasne F, de Ceaurriz J. Recombinant erythropoietin in urine. Nature 2000; 405: 635

    Article  PubMed  CAS  Google Scholar 

  95. Browne A, Lachance V, Pipe A. The ethics of blood testing as an element of doping control in sport. Med Sci Sports Exerc 1999; 31: 497–501

    Article  PubMed  CAS  Google Scholar 

  96. Lausanne International Olympic Committee (IOC). Scientific panel reaffirms blood-urine EPO test [press release]. 2001 Nov 7. IOC [online]. Available from: URL: http://www.plympic.org/ioc/e/news/pressreleases/press_507_e.html [Accessed 2001 Dec 11]

  97. Lausanne declaration on doping in sport. 1999 Feb 4. International Olympic Committee [online]. Available from: URL: http://nodoping.olympic.org/Declaration_e.html [Accessed 2001 Dec 11]

  98. Stray-Gundersen J, Karlsen T, Lasne F, et al. Investigation of the rhEPO detection protocol in athletes sojourning to the Salt Lake City Olympic cross-country venue. Med Sci Sports Exerc 2001; 33 Suppl. 5: S2

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the valuable and constructive input provided by colleagues at the United States Olympic Committee, Jay T. Kearney, Ph.D., Kenneth W. Rundell, Ph.D., and Peter G. Davis, Ph.D.

The author does not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall L. Wilber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilber, R.L. Detection of DNA-Recombinant Human Epoetin-Alfa as a Pharmacological Ergogenic Aid. Sports Med 32, 125–142 (2002). https://doi.org/10.2165/00007256-200232020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200232020-00004

Keywords

Navigation