Skip to main content
Log in

Physical Activity and Lipoprotein Lipid Disorders

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Working muscle plays a central role in the control of lipid metabolism. Increased physical activity induces a number of positive changes in the metabolism of lipoproteins: serum triglycerides are lowered by the increased lipolytic activity and the production of native high density lipoprotein (HDL) particles is increased. The increased lecithin: cholesterol acyltransferase activity leads to an increased production of HDL2, which in addition is catabolised more slowly due to a decreased activity of hepatic lipase. The 3 effects explain the increased HDL levels of endurance trained individuals. These effects have been demonstrated in cross-sectional as well as longitudinal studies by different groups, and can be induced by training, independent of changes in body weight. The influence of endurance activity on the quality and quantity of low density lipoprotein (LDL) particles is a further reason for the antiatherogenic potential of increased physical activity. It has been shown by several groups that small dense LDL particles represent a particular risk factor for atherosclerosis. Recent studies presented strong evidence that LDL level and composition can be influenced favourably by physical activity. In addition to the direct influence of physical activity on lipids and lipoproteins, physical exercise may improve the disturbances of haemorheological factors, particularly those associated with hypertriglyceridaemia.

In conclusion, there is increased evidence that physical activity is able to favourably influence all 3 components of the atherogenic lipoprotein phenotype: the HDL concentration increases, the concentration of small dense LDL decreases, and serum triglycerides are reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaupovic P. Apolipoprotein composition as the basis for classifying plasma lipoproteins. Characterization of ApoA- and ApoB-con-taining lipoprotein families. Progress in Lipid Research 30: 105–138, 1991

    PubMed  CAS  Google Scholar 

  • Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thrombosis and Haemostasis 60: 491–494, 1988

    PubMed  CAS  Google Scholar 

  • Allison FG, Iammarino RM, Metz KF, Skrinar GS, Kuller LH, et al. Failure of exercise to increase high density lipoprotein cholesterol. Journal of Cardiac Rehabilitation 1: 257–265, 1981

    Google Scholar 

  • Aimér LO, Janzon L. Low vascular fibrinolytic activity in obesity. Thrombosis Research 6: 171–175, 1975

    Google Scholar 

  • Aimér LO, Nilsson IM. On fibrinolysis in diabetes mellitus. Acta Medica Scandinavica 198: 101–106, 1975

    Google Scholar 

  • American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Medicine and Science in Sports and Exercise 22: 265–274, 1990

    Google Scholar 

  • Andersen P, Arnesen H, Hjermann I. Hyperlipoproteinaemia and reduced fibrinolytic activity in healthy coronary high-risk men. Acta Medica Scandinavica 209: 199–202, 1981

    PubMed  CAS  Google Scholar 

  • Assmann G, Betteridge DJ, Gotto Jr AM, Steiner G. Management of hypertriglyceridemic patients. A. Treatment classifications and goals. American Journal of Cardiology 68: 30A–34A, 1991

    PubMed  CAS  Google Scholar 

  • Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). American Journal of Cardiology 70: 733–737, 1992

    PubMed  CAS  Google Scholar 

  • Astrand PO. Why exercise. Medicine and Science in Sports and Exercise 24: 153–162, 1992

    PubMed  CAS  Google Scholar 

  • Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, et al. Low-density lipoprotein subclass patterns and risk of myocardial infarction. Journal of the American Medical Association 260: 1917–1921, 1988

    PubMed  CAS  Google Scholar 

  • Austin MA, King MC, Vranizan K, Krauss RM. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 82: 495–506, 1990

    PubMed  CAS  Google Scholar 

  • Baker TT, Allan D, Lei KY, Willcox KK. Alterations in lipid and protein profiles of plasma lipoproteins in middle-aged men consequent to an aerobic exercise program. Metabolism 35: 1037–1043, 1986

    PubMed  CAS  Google Scholar 

  • Ballantyne FC, Clark RS, Simpson HS, Ballantyne D. High density and low density lipoprotein subfractions in survivors of myocardial infarction and in control subjects. Metabolism 31: 433–437, 1982

    PubMed  CAS  Google Scholar 

  • Barkia A, Puchois P, Ghalim N. Differential role of apolipoprotein AI containing particles in cholesterol efflux from adipose cells. Arteriosclerosis 87: 135–146, 1991

    CAS  Google Scholar 

  • Baumstark MW, Berg A, Halle M, Rensing UFE, Roskamm H, et al. Low-density lipoprotein subfractions and severity of angiographically assessed coronary artery disease. Abstract. Program and Abstracts, 2nd International Symposium on Multiple Risk Factors in Cardiovascular Disease, Osaka, pp. 83, 1992

  • Baumstark MW, Frey I, Berg A, Keul J. Acute and delayed effects of exhaustive exercise on serum lipoproteins. II. Composition and distribution of low density lipoprotein subfractions. Eurpean Journal of Applied Physiology 66: 526–530, 1992

    Google Scholar 

  • Baumstark MW, Halle M, Frey I, Berg A, Keul J. Composition and distribution of LDL-subfractions in sedentary and endurance trained men with hypercholesterolemia. Abstract. 9th International Symposium on Atherosclerosis, pp. 193, International Atherosclerosis Society, 1991

  • Baumstark MW, Kreutz W, Berg A, Frey I, Keul J. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering. Biochemica et Biophysica Acta 1037: 48–57, 1990

    CAS  Google Scholar 

  • Berg A, Frey I, Keul J. Apoprotein profile in healthy males and its relationship to maximum aerobic capacity (MAC). Clinica Chimica Acta 161: 165–171, 1986a

    CAS  Google Scholar 

  • Berg A, Halle M, Baumstark MW, Frey I, Keul J. Physical activity, lipids and lipoprotein metabolism. The benefit of exercise and training in hyperlipidemia. In Watson et al. (Eds) Exercise and disease, pp. 26–36, CRC Press, Boca Raton, 1992

    Google Scholar 

  • Berg A, Jakob E, Keul J. Physiological energetic in sports. In Wieser et al. (Eds) Energy transformations in cells and organisms, pp. 241–247, Thieme-Verlag, Stuttgart, 1989

    Google Scholar 

  • Berg A, Jakob E, Lehmann M, Dickhuth HH, Huber G, et al. Aktuelle Aspekte der modernen Ergometrie. Pneumologie 44: 2–13, 1990

    PubMed  CAS  Google Scholar 

  • Berg A, Johns J, Baumstark M, Kreutz W, Keul J. HDL subfractions after a single, extended episode of physical exercise. Atherosclerosis 47: 231–240, 1983

    PubMed  CAS  Google Scholar 

  • Berg A, Keul J. Influence of maximum aerobic capacity and relative body weight on the lipoprotein profile in athletes. Atherosclerosis 55: 225–231, 1985

    PubMed  CAS  Google Scholar 

  • Berg A, Lehmann M, Keul J. Körperliche Aktivität bei Gesunden und Koronarkranken, 2nd ed., Thieme Verlag, Stuttgart, 1986b

    Google Scholar 

  • Berg A, Ringwald G, Keul J, Deus B. Serum lipoprotein cholesterol in male athletes in different sports. Journal of Clinical Chemistry and Clinical Biochemistry 18: 707, 1980

    Google Scholar 

  • Blair SN, Kohl III HW, Paffenbarger RS, Clark DG, Cooper KH, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. Journal of the American Medical Association 262: 2395–2401, 1989

    PubMed  CAS  Google Scholar 

  • Blankenhorn DH, Alaupovic P, Wickham E, Chin HP, Azen SP. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors. Circulation 81: 470–476, 1990

    PubMed  CAS  Google Scholar 

  • Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, et al. Regression of coronary artery disease as a result of intensive lipid-lower-ing therapy in men with high levels of apoprotein B. New England Journal of Medicine 323: 1287–1297, 1990

    Google Scholar 

  • Brownell KD, Bachorik PS. Changes in plasma lipid and lipoprotein levels in men and women after a program of moderate exercise. Circulation 65: 477–484, 1982

    PubMed  CAS  Google Scholar 

  • Calvalho de Souza J, Soria C, Ayrault-Jarrier M, Pastier D, Bruckert E, et al. Association between coagulation factors VII and X with triglyceride rich lipoproteins. Journal of Clinical Pathology 41: 940–944, 1988

    Google Scholar 

  • Chance B, Leigh JS, Clark BJ, Maris J, Kent J, et al. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. Proceedings of the National Academy of Sciences of the United States of America 82: 8384–8388, 1985

    PubMed  CAS  Google Scholar 

  • Chandrashekhar Y, Anand IS. Exercise as a coronary protective factor. American Heart Journal 122: 1723–1739, 1991

    PubMed  CAS  Google Scholar 

  • Collet X, Perret B, Simard G, Raffai E, Marcel YL. Differential effects of lecithin and cholesterol on the immunoreactivity and conformation of apolipoprotein A-I in high density lipoproteins. Journal of Biological Chemistry 266: 9145–9152, 1991

    PubMed  CAS  Google Scholar 

  • Cook TC, Laporte RE, Washburn RA, Traven ND, Slemenda CW, et al. Chronic low level physical activity as a determinant of high density lipoprotein cholesterol and subfractions. Medicine and Science in Sports and Exercise 18: 653–657, 1986

    PubMed  CAS  Google Scholar 

  • Cortner JA, Le NA, Coates PM, Bennett MJ, Cryer DR. Determinants of fasting plasma triglyceride levels — metabolism of hepatic and intestinal lipoproteins. European Journal of Clinical Investigation 22: 158–165, 1992

    PubMed  CAS  Google Scholar 

  • Cullinane E, Siconolfi S, Saritelli A, Thomson P. Acute decrease in serum triglycerides with exercise: is there a threshold for an exercise effect. Metabolism 31: 844–847, 1982

    PubMed  CAS  Google Scholar 

  • Cuppers HJ, Erdmann D, Berger M. Glucose tolerance, serum insulin and serum lipids in athletes. In Kindermann et al. (Eds) Sportmedizin für Breiten- und Leistungssport, pp. 163–168, Demeter Verlag, Gräfelfmg, 1980

    Google Scholar 

  • Dattilo AM, Krisetherton PM. Effects of weight reduction on blood lipids and lipoproteins — a meta-analysis. American Journal of Clinical Nutrition 56: 320–328, 1992

    PubMed  CAS  Google Scholar 

  • Davis PG, Bartoli WP, Durstine JL. Effects of acute exercise intensity on plasma lipids and apolipoproteins in trained runners. Journal of Applied Physiology 72: 914–919, 1992

    PubMed  CAS  Google Scholar 

  • Dufaux B, Assmann G, Hollmann W. Plasma lipoproteins and physical activity: a review. International Journal of Sports Medicine 3: 123–136, 1982

    PubMed  CAS  Google Scholar 

  • Dufaux B, Assmann G, Order U, Hoederath A, Hollmann W. Plasma lipoproteins, hormones and energy substrated during the first days after prolonged exercise. International Journal of Sports Medicine 2: 256–260, 1981

    Google Scholar 

  • Dufaux B, Order U, Müller R, Hollmann W. Delayed effects of prolonged exercise on serum lipoproteins. Metabolism 35: 105–109, 1986

    PubMed  CAS  Google Scholar 

  • Eaton DL, Fless GM, Kohr WJ, McLean JW, Xu QT, et al. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proceedings of the National Academy of Sciences of the United States of America 84: 3224–3228, 1987

    PubMed  CAS  Google Scholar 

  • Epstein SE, Rosing DR, Brakman P, Redwood DR, Astrup T. Impaired fibrinolytic response to exercise in patients with type IV hyperlipoproteinaemia. Lancet 2: 631–634, 1970

    PubMed  CAS  Google Scholar 

  • Estelles A, Tormo G, Aznar J, Espana F, Tormo V. Reduced fibrinolytic activity in coronary heart disease in basal conditions and after exercise. Thrombosis Research 40: 373–383, 1985

    PubMed  CAS  Google Scholar 

  • Farell PA, Maksud MG, Pollock MG, Foster G, Anholm J, et al. A comparison of plasma cholesterol, triglycerides and high density cholesterol in speed skaters, weight lifters and non-athletes. European Journal of Applied Physiology and Occupational Physiology 48: 77–82, 1982

    Google Scholar 

  • Fielding CJ, Fielding PE. Purification and substrate specificity of lecithin cholesterol acyltransferase from human plasma. FEBS Letters 15: 355–358, 1971

    PubMed  CAS  Google Scholar 

  • Foster DM, Chait A, Albers JJ, Failor RA, Harris C, et al. Evidence for kinetic heterogeneity among human low density lipoproteins. Metabolism 35: 685–696, 1986

    PubMed  CAS  Google Scholar 

  • Franklin BA, Gordon S, Timmis GC. Amount of exercise necessary for the patient with coronary artery disease. American Journal of Cardiology 69: 1426–1432, 1992

    PubMed  CAS  Google Scholar 

  • Frey I, Baumstark MW, Berg A. Acute and delayed effects of prolonged exercise on serum lipoproteins. I. Concentration and composition of high density lipoprotein subfractions. European Journal of Applied Physiology 66: 521–525, 1993

    CAS  Google Scholar 

  • Frey I, Baumstark MW, Berg A, Keul J. Influence of acute maximal exercise on lecithin: cholesterol acyltransferase activity in healthy adults of differing aerobic performance. European Journal of Applied Physiology and Occupational Physiology 62: 31–35, 1991

    PubMed  CAS  Google Scholar 

  • Frey I, Kamps H, Baumstark MW, Berg A, Keul J. Distribution of lipoprotein species (LpA-I,LpA-I:A-II) in serum and HDL subfractions of untrained and trained normolipemic men. Clinica Chimica Acta 211: 167–173, 1992

    CAS  Google Scholar 

  • Fruchart JC. High-density lipoprotein particles, nutrition and arteriosclerosis. Bibliotheca Nutritio et Dieta 49: 66–78, 1992

    PubMed  Google Scholar 

  • Fruchart JC, Ailhaud G. Recent progress in the study of apoA-I containing lipoprotein particles. Progress in Lipid Research 30: 145–150, 1992

    Google Scholar 

  • Goldberg L, Elliot DL. The effect of exercise on lipid metabolism in men and women. Sports Medicine 4: 307–321, 1987

    PubMed  CAS  Google Scholar 

  • Goldberg IJ, Le NA, Paterniti JR. Lipoprotein metabolism during acute inhibition of hepatic triglycéride lipase in the cynomolgus monkey. Journal of Clinical Investigation 70: 1184–1192, 1982

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Probstfield JL, Garrison RJ. High density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79: 8–15, 1989

    PubMed  CAS  Google Scholar 

  • Gordon DJ, Rifkind BM. High-density lipoprotein — the clinical implications of recent studies. New England Journal of Medicine 321: 1311–1316, 1989

    PubMed  CAS  Google Scholar 

  • Gordon T, Kannel WB, Castelli WP, Dawber TR. Lipoproteins, cardiovascular disease and death. The Framingham study. Archives of Internal Medicine 141: 1128–1131, 1981

    PubMed  CAS  Google Scholar 

  • Gram J, Jespersen J. A selective depression of tissue plasminogen activator (t-PA) activity in euglobulins characterises a risk group among survivors of acute myocardial infarction. Thrombosis and Haemostasis 57: 137–139, 1987

    PubMed  CAS  Google Scholar 

  • Griffin BA, Skinner ER, Maughan RJ. The acute effect of prolonged walking and dietary changes on plasma lipoprotein concentrations and high-density lipoprotein subfractions. Metabolism 37: 535–541, 1988

    PubMed  CAS  Google Scholar 

  • Gris JC, Schved JF, Feugeas O, Aquilar-Martinez P, Arnaud A, et al. Impact of smoking, physical training and weight reduction on FVII, PAI-1 and hemostatic markers in sedentary men. Thrombosis and Haemostasis 64: 516–520, 1990

    PubMed  CAS  Google Scholar 

  • Gunnarsson R, Nyman D, Walinder O. Fibrinolytic activity and diabetes control: evidence for a relationship. Acta Medica Scandinavica 639: 23–24, 1980

    PubMed  CAS  Google Scholar 

  • Hamsten A, Walldius G, Szamosi A, Blombaeck M, DeFaire V, et al. Plasminogen activator inhibitor in plasma: risk for recurrent myocardial infarction. Lancet 2: 3–9, 1987

    PubMed  CAS  Google Scholar 

  • Hamsten A, Wiman B, DeFaire V, Blombaeck M. Increased plasma levels of rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. New England Journal of Medicine 313: 1557–1563, 1985

    PubMed  CAS  Google Scholar 

  • Hartung GH, Foreyt JP, Mitchell RE, Vlasek I, Gotto AM. Relationship of diet to high-density lipoprotein cholesterol in middle-aged marathon runners, joggers and inactive men. New England Journal of Medicine 302: 357–361, 1980

    PubMed  CAS  Google Scholar 

  • Hartung GH, Squires WG, Gotto AM. Effect of exercise training on plasma high-density lipoprotein cholesterol in coronary-disease patients. American Heart Journal 101: 181–184, 1981

    PubMed  CAS  Google Scholar 

  • Haskell W. The influence of exercise training on plasma lipids and lipoproteins in healthy and disease. Acta Medica Scandinavica 711 (Suppl.): 25–37, 1985

    Google Scholar 

  • Haskell WL. Exercise-induced change in plasma lipids and lipoproteins. Preventive Medicine 13: 23–36, 1984

    PubMed  CAS  Google Scholar 

  • Haskell WL. Physical activity and health: need to define the required stimulus. American Journal of Cardiology 55: 4D–5D, 1985

    PubMed  CAS  Google Scholar 

  • Heinrich J, Schulte H, Balleisen L, Assmann G, van de Loo J. Predictive value of haemostatic variables in the PROCAM-study. Thrombosis and Haemostasis 65: 815, 1991

    Google Scholar 

  • Herbert PN, Bernier DM, Cullinane EM, Edelstein L, Kantor MA, et al. High density lipoprotein metabolism in runners and sedentary men. Journal of the American Medical Association 252: 1034–1037, 1984

    PubMed  CAS  Google Scholar 

  • Herrick JB. Clinical features of sudden obstruction of the coronary arteries. Journal of the American Medical Association 59: 2015–2020, 1912

    Google Scholar 

  • Holloszy JO, Skinner JS, Toro G, Cureton TK. Effect of a six-month program for endurance exercise on serum lipids of middle-aged men. American Journal of Cardiology 14: 753–760, 1964

    PubMed  CAS  Google Scholar 

  • Holmes Jr DR, Elveback RR, Fry RL, Kottke BA, Ellefson RD. Association of risk factor variables and coronary artery disease documented with angiography. Circulation 63: 293–299, 1981

    PubMed  Google Scholar 

  • Hurley BF, Hagberg JM, Allen WK, Seals DR, Young JC, et al. Effect of training on blood lactate levels during submaximal exercise. Journal of Applied Physiology 565: 1260–1264, 1984

    Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, et al. Muscle triglyceride utilisation during exercise: effect of training. Journal of Applied Physiology 60: 562–567, 1986

    PubMed  CAS  Google Scholar 

  • Huttunen JK, Länsimies E, Voutilainen E, Ehnholm C, Hietanen E, et al. Effect of moderate exercise on serum lipoproteins — controlled clinical trial with special reference to serum high-density lipoproteins. Circulation 60: 1220–1229, 1979

    PubMed  CAS  Google Scholar 

  • Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. Journal of Applied Physiology 62: 999–1005, 1987

    PubMed  CAS  Google Scholar 

  • Juhan-Vague I, Alessi MC, Joly P, Thirion X, Vague P, et al. Plasma plasminogen activator inhibitor-1 in angina pectoris: influence of plasma insulin and acute-phase response. Arteriosclerosis 9: 362–367, 1989

    PubMed  CAS  Google Scholar 

  • Kahn SE, Larson VG, Beard JC, Cain KC, Fellingham GW, et al. Effect of exercise on insulin action, glucose tolerance and insulin secretion in aging. American Journal of Physiology 358: E937–E943, 1990

    Google Scholar 

  • Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease. Journal of the American Medical Association 258: 1183–1186, 1987

    PubMed  CAS  Google Scholar 

  • Kantor MA, Cullinane EM, Herbert PN, Thompson P. Acute increase in lipoprotein lipase following prolonged exercise. Metabolism 33: 454–457, 1984

    PubMed  CAS  Google Scholar 

  • Kantor MA, Cullinane EM, Sady SP, Herbert PN, Thompson PD. Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men. Metabolism 36: 188–192, 1987

    PubMed  CAS  Google Scholar 

  • Karadi I, Kostner GM, Gries A, Nimpf J, Romics L, et al. Lipoprotein (a) and plasminogen are immunochemically related. Biochemica et Biophysica Acta 960: 91–97, 1988

    CAS  Google Scholar 

  • Keul J. Muscle metabolism during long lasting exercise. In Howald et al. (Eds) Metabolic adaptation to prolonged physical exercise, pp. 31–42, Birkhäuser Verlag, Basel, 1975

    Google Scholar 

  • Keul J, Doll E, Keppler D. Energy metabolism of human muscle, Karger Verlag, Basel, 1972

    Google Scholar 

  • Kiens B, Jörgensen I, Lewis S, Jensen G, Lithell H, et al. Increased plasma HDL-cholesterol and apo AI in sedentary middle-aged men after physical conditioning. European Journal of Clinical Investigation 10: 203–209, 1980

    PubMed  CAS  Google Scholar 

  • Kiens B, Lithell H. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. Journal of Clinical Investigation 83: 558–564, 1989

    PubMed  CAS  Google Scholar 

  • Koivisto V, Hendler R, Nadel E, Felig P. Influence of physical training on the fuel-hormone response to prolonged low intensity exercise. Metabolism 31: 192–197, 1982

    PubMed  CAS  Google Scholar 

  • Krauss RM. Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease. American Heart Journal 113: 578–582, 1987

    PubMed  CAS  Google Scholar 

  • Krauss RM. Low-density lipoprotein subclasses and risk of coronary artery disease. Current Opinion in Lipidology 2: 248–252, 1991

    CAS  Google Scholar 

  • Krauss RM, Wood PD, Giotas C, Waterman D, Lindgren FT. Heparin-released plasma lipase activities and lipoprotein levels in distance runners. Abstract. Circulation 6 (Suppl.): II–73, 1979

    Google Scholar 

  • Kullmer T, Kindermann W. Apolipoproteine und Lipoproteine bei unterschiedlicher körperlicher Aktivität und Leistungsfähigkeit. Klinische Wochenschrift 63: 1102–1109, 1985

    PubMed  CAS  Google Scholar 

  • Kuusi T, Kostiainen E, Vartiainen E, Pitkänen L, Ehnholm C, et al. Acute effects of marathon running on levels of serum lipoproteins and androgenic hormones in healthy males. Metabolism 33: 527–531, 1984

    PubMed  CAS  Google Scholar 

  • Kuusi T, Nikkilä EA, Saarinen P, Varjo P, Laitinen LA. Plasma high density lipoprotein HDL2, HDL3 and postheparin plasma lipase in relation to parameters of physical fitness. Arteriosclerosis 41: 209–219, 1982

    CAS  Google Scholar 

  • Laffel GL, Braumwald E. Thrombolytic therapy. A new strategy for the treatment of acute myocardial infarction. New England Journal of Medicine 311: 710–776, 1984

    PubMed  CAS  Google Scholar 

  • Lakka TA, Salonen JT. Physical activity and serum lipids — a cross-sectional population study in eastern Finnish men. American Journal of Epidemiology 136: 806–818, 1992

    PubMed  CAS  Google Scholar 

  • Lamon-Fava S, Fischer EC, Nelson ME, Evans WJ, Millar JS, et al. Effect of exercise and menstrual cycle status on plasma lipids, low density lipoprotein particle size, and apolipoproteins. Journal of Clinical Endocrinology and Metabolism 68: 17–21, 1989

    PubMed  CAS  Google Scholar 

  • Lamon-Fava S, McNamara JR, Farber HW, Hill NS, Schaefer EJ. Acute changes in lipid, lipoprotein, apolipoprotein, and low-density lipoprotein particle size after an endurance triathlon. Metabolism 38: 921–925, 1989

    PubMed  CAS  Google Scholar 

  • Landin K, Stigendal L, Eriksson E, Krotkiewski M, Risberg B, et al. Abdominal obesity is associated with an impaired fibrinolytic activity and elevated plasminogen activator inhibitor-1. Metabolism 39: 1044–1048, 1990

    PubMed  CAS  Google Scholar 

  • Lehtonen A, Viikari J. The effect of vigorous physical activity at work on serum lipids with a special reference to serum high-density lipoprotein cholesterol. Acta Physiologica Scandinavica 104: 117–121, 1978a

    PubMed  CAS  Google Scholar 

  • Lehtonen A, Viikari J. Serum triglycerides and cholesterol and serum high-density lipoprotein cholesterol in highly physically active men. Acta Medica Scandinavica 294: 111–114, 1978b

    Google Scholar 

  • Lehtonen A, Viikari J. Serum lipids in soccer and ice hockey players. Metabolism 29: 36–39, 1980

    PubMed  CAS  Google Scholar 

  • Lehtonen A, Viikari J, Engholm C. The effect of exercise on high density (HDL) lipoprotein apoproteins. Acta Medica Scandinavica 106: 487–488, 1979

    CAS  Google Scholar 

  • Leon AS, Connett J, Jacobs DRJ, Rauramaa R. Leisure-time physical activity levels and risk of coronary heart disease and death. Journal of the American Medical Association 258: 2388–2395, 1987

    PubMed  CAS  Google Scholar 

  • Levy RI, Brensike JF, Epstein SE, Kelsey SF, Passamani ER, et al. The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of the NHLBI Type II Coronary Intervention Study. Circulation 69: 325–337, 1984

    PubMed  CAS  Google Scholar 

  • Lewis B, Watts GF, Lewis ES, Brunt JNH, Jackson P. Determinants of atherosclerosis progression in the STARS angiographic trial. Abstract. Program and Abstracts, 2nd International Symposium on Multiple Risk Factors in Cardiovascular Disease, pp. 50, Osaka, 1992

  • Loscalzo J. Lipoprotein(a). A unique risk factor for atherothrombotic disease. Arteriosclerosis 10: 672–679, 1990

    PubMed  CAS  Google Scholar 

  • Lowe GDO, Drummond MM, Lorimer AR, Hutton I, Forbes CD, et al. Relation between extent of coronary artery disease and blood viscosity. British Medical Journal 8: 673–674, 1980

    Google Scholar 

  • Lowe GDO, Stromberg P, Forbes CD, McArdle BM, Lorimer AR, et al. Increased blood viscosity and fibrinolytic inhibitor in type II hyperlipoproteinaemia. Lancet 27: 472–475, 1982

    Google Scholar 

  • Luc G, Bard JM, Lussier-Cacan S. High-density lipoprotein particles in octogenarians. Metabolism 40: 1238–1243, 1991

    PubMed  CAS  Google Scholar 

  • Lussier Cacan S, Bard JM, Boulet L. Lipoprotein composition changes induced by fenofibrate in dysbetalipoproteinemia type III. Arteriosclerosis 78: 167–182, 1989

    CAS  Google Scholar 

  • Maciejko JJ, Holmes DR, Kottke BA, Zinsmeister AR, Dinh DM, et al. Apoprotein A-I as a marker of angiographically assessed coronary-artery disease. New England Journal of Medicine 309: 386–389, 1983

    Google Scholar 

  • Marniemi J, Dahlström S, Kvist M, Seppänen A, Hietanen E. Dependence of serum lipids and lecithin: cholesterol acyltransferase levels on physical training in young men. European Journal of Applied Physiology and Occupational Physiology 49: 25–35, 1982

    PubMed  CAS  Google Scholar 

  • Marti B, Knobloch M, Riesen WF, Howald H. Fifteen-year changes in exercise, aerobic power, abdominal fat, and serum lipids in runners and controls. Medicine and Science in Sports and Exercise 23: 115–122, 1991

    PubMed  CAS  Google Scholar 

  • Marti B, Pekkanen J. Leben Läufer länger? Schweizerische Rundschau für Medizin 41: 1097–1100, 1988

    Google Scholar 

  • McGinnis JM. The public health burden of a sedentary lifestyle. Medicine and Science in Sports and Exercise 24: S196–S200, 1992

    PubMed  CAS  Google Scholar 

  • Meade TW, Brozovic M, Chakrabarti R, Haines AP, Imeson JD, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 6: 533–537, 1986

    Google Scholar 

  • Meade TW, North WRS, Chakrabarti R. Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1: 1050–1054, 1980

    PubMed  CAS  Google Scholar 

  • Mehta J, Mehta P, Lawson D, Saldeen T. Plasma tissue plasminogen activator inhibitor levels in coronary artery disease. Journal of the American College of Cardiology 9: 263–268, 1987

    PubMed  CAS  Google Scholar 

  • Moore R, Penfold W, Simpson R, Mann J, Turner R. High-density lipoprotein, lipid, and carbohydrate metabolism during increasing fitness. Annals of Clinical Biochemistry 16: 76–80, 1979

    PubMed  CAS  Google Scholar 

  • Moxley RT, Brakman P, Astrup T. Resting levels of fibrinolysis in blood in inactive and exercising men. Journal of Applied Physiology 28: 549–552, 1970

    PubMed  CAS  Google Scholar 

  • Nikkilä E, Taskinen M, Rehunen S, Härkönen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27: 1661–1671, 1978

    PubMed  Google Scholar 

  • Nikkilä EA, Kuusi T, Taskinen MR and Tikkanen MJ. Regulation of lipoprotein metabolism by endothelial lipolytic enzymes. In Carlsson et al. (Eds) Treatment of hyperlipoproteinemia, Raven Press, New York, 1984

    Google Scholar 

  • Nilsson-Ehle P, Garfinkel AS, Schotz MC. Lipolytic enzymes and plasma lipoprotein metabolism. Annual Review of Biochemistry 49: 667–693, 1980

    PubMed  CAS  Google Scholar 

  • Nordoy A, Illingworth DR, Conner WE, Goodnight S. Increased activity of factor VII and factor VII-phospholipid complex measured using a Normotest system in subjects with hyperlipidemia. Haemostasis 20: 65–72, 1990

    PubMed  CAS  Google Scholar 

  • Norum KR. Dietary fat and lipids. Nutrition Reviews 50: 30–37, 1992

    PubMed  CAS  Google Scholar 

  • Nye E, Carlson P, Kirstein P, Rossner S. Changes in high-density lipoprotein subfractions and other lipoproteins induced by exercise. Clinica Chimica Acta 113: 51–57, 1981

    CAS  Google Scholar 

  • O’Conner GT, Buring JE, Yusuf S, Goldhaber SZ, Olmstead EM, et al. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation 80: 234–244, 1989

    Google Scholar 

  • Olofsson BO, Dahlen G, Nilsson TK. Evidence for increased levels of plasminogen activator inhibitor and tissue plasminogen activator in plasma of patients with angiographically verified coronary artery disease. European Heart Journal 10: 77–82, 1989

    PubMed  CAS  Google Scholar 

  • Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, et al. Can life style changes reverse coronary heart disease? Lancet 336: 129–133, 1990

    PubMed  CAS  Google Scholar 

  • Oscai L, Palmer W. Muscle lipolysis during exercise: an update. Sports Medicine 6: 23–28, 1988

    PubMed  CAS  Google Scholar 

  • Paffenbarger RS, Hyde RT, Wing A, Hsieh CC. Physical activity, all-cause mortality and longevity of college alumni. New England Journal of Medicine 314: 605–613, 1986

    PubMed  Google Scholar 

  • Paffenbarger R, Hyde RT, Wing AL, Steinmetz CH. A natural history of athleticism and cardiovascular health. Journal of the American Medical Association 252: 491–495, 1984

    PubMed  Google Scholar 

  • Paul P. Effects of long lasting physical exercise and training on lipid metabolism. In Howald et al. (Eds) Metabolic adaptation to prolonged physical exercise, pp. 156–193, Birkhäuser Verlag, Basel, 1975

    Google Scholar 

  • Pavano JA, Collucci M, Van der Wer F. Plasminogen activator inhibitor in the blood of patients with coronary artery disease. British Medical Journal 291: 575–576, 1985

    Google Scholar 

  • Pekkanen J, Marti B, Nissinen A, Tuomilehto J, Punsar S, et al. Reduction of premature mortality by high physical activity: 20-year follow-up of middle-aged Finnish men. Lancet I: 1473–1477, 1987

    Google Scholar 

  • Peltonen P, Marniemi J, Vuori I, Hietanen E. The effect of controlled physical training on lipid metabolism in man. A longitudinal study. Acta Physiologica Scandinavica 108: A26, 1980

    Google Scholar 

  • Puchois P, Kandoussi A, Fievet P, Fourrier JL, Bertrand M, et al. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis 68: 35–40, 1987

    PubMed  CAS  Google Scholar 

  • Rader DJ, Castro G, Zech LA, Fruchart JC, Brewer HB. Invivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I, A-II. Journal of Lipid Research 32: 1849–1859, 1991

    PubMed  CAS  Google Scholar 

  • Ren J, Henriksson J, Katz A, Sahlin K. NADH content in type I and type II human muscle fibres after dynamic exercise. Biochemical Journal 251: 183–187, 1988

    PubMed  CAS  Google Scholar 

  • Rothblat GH, Mahlberg FH, Johnson WJ, Phillips MC. Apolipoproteins, membrane cholesterol domains and the regulation of cholesterol efflux. Journal of Lipid Research 33: 1091–1097, 1992

    PubMed  CAS  Google Scholar 

  • Rothblat GH, Phillips MC. Mechanism of cholesterol efflux from cells. Effects of acceptor structure and concentration. Journal of Biological Chemistry 257: 4775–4782, 1982

    PubMed  CAS  Google Scholar 

  • Sady SP, Thompson PD, Cullinane EM, Kantor MA, Domagala E, et al. Prolonged exercise augments plasma triglyceride clearance. Journal of the American Medical Association 256: 2552–2555, 1986

    PubMed  CAS  Google Scholar 

  • Savard J, Despres JP, Marcotte M, Theriault G, Tremblay A, et al. Acute effects of exercise on human adipose tissue metabolism. Metabolism 36: 458–480, 1987

    Google Scholar 

  • Saxena U, Klein MG, Goldberg IJ. Transport of lipoprotein lipase across endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 88: 2254–2258, 1991

    PubMed  CAS  Google Scholar 

  • Scanu A, Lawn R, Berg K. Lipoprotein(a) and atherosclerosis. Annals of Internal Medicine 115: 209–218, 1991

    PubMed  CAS  Google Scholar 

  • Schnabel A, Kinderman W. Veränderungen von Lipiden und Lipoproteinen im Serum nach Körperarbeit unterschiedlicher Dauer. Deutsche Zeitschrift für Sportmedizin 33: 283–289, 1982

    Google Scholar 

  • Schneider SH, Kim HC, Khachadurian AK, Ruderman NB. Impaired fibrinolytic response to exercise in type II diabetes: effects of exercise and physical training. Metabolism 37: 924–929, 1988

    PubMed  CAS  Google Scholar 

  • Schriewer H, Assmann G, Sandkamp M, Schulte H. The relationship of lipoprotein (a) [Lp(a)] to risk factors of coronary heart disease. Journal of Clinical Chemistry and Clinical Biochemistry 22: 591–596, 1984

    CAS  Google Scholar 

  • Segrest JP, Jones MK, DeLoof H, Brouilette CG, Venkatachalapathi YV, et al. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. Journal of Lipid Research 33: 141–166, 1992

    PubMed  CAS  Google Scholar 

  • Shaw DA, McNaughton D. Relationship between blood fibrinolytic activity and body fatness. Lancet 1: 352–354, 1963

    PubMed  CAS  Google Scholar 

  • Simpson HCR, Meade TW, Stirling Y, Mann JI, Chakrabartt R, et al. Hypertriglyceridaemia and hypercoagulability. Lancet 9: 786–790, 1983

    Google Scholar 

  • Siscovick DS, Weiss NS, Fletcher RH, Lasky T. The incidence of primary cardiac arrest during vigorous exercise. New England Journal of Medicine 311: 874–877, 1984

    PubMed  CAS  Google Scholar 

  • Slattery ML, Jacobs DR. Physical fitness and cardiovascular disease mortality. American Journal of Epidemiology 127: 571–580, 1988

    PubMed  CAS  Google Scholar 

  • Slotte JP, Oram JF, Bierman EL. Binding of high density lipoproteins to cell receptor promotes translocation of cholesterol from intracellular membranes to the cell surface. Journal of Biological Chemistry 262: 904–912, 1987

    Google Scholar 

  • Speiser W, Langer W, Pschaick A, Selmayr E, Ibe B, et al. Increased blood fibrinolytic activity after physical exercise: Comparative study in individuals with different sporting activities and in patients after myocardial infarction taking part in a rehabilitation sports program. Thrombosis Research 51: 543–555, 1988

    PubMed  CAS  Google Scholar 

  • Stein VT, Baumstark MW, Berg A, Keul J. Lipoprotein(a) — Serum-konzentrationen bei Personen mit unterschiedlicher Trainingsanamnese. In Bernett et al. (Eds) Sport und Medizin — Pro und Contra, pp. 530–532, W. Zuckschwerdt Verlag, Munich, 1991

    Google Scholar 

  • Stremmel W, Diede H. Fatty acid uptake by human hepatoma cell lines represents a carrier-mediated uptake process. Biochemica et Biophysica Acta 1013: 218–222, 1989

    CAS  Google Scholar 

  • Stubbe I, Hansson PG, Nilsson-Ehle. Plasma lipoproteins and lipolytic enzyme activities during endurance training in sedentary men: changes in high density lipoprotein subfractions and composition. Metabolism 32: 1120–1128, 1983

    PubMed  CAS  Google Scholar 

  • Superko HR. Exercise training, serum lipids, and apoprotein particles: is there a change threshold. Medicine and Science and Sports in Exercise 23: 67–685, 1991

    Google Scholar 

  • Taskinen MR, Nikkilä EA, Rehunen S, Gordin A. Effect of acute vigorous exercise on lipoprotein lipase activity of adipose tissue and skeletal muscle in physically active men. Artery 6: 471–483, 1980

    PubMed  CAS  Google Scholar 

  • Teng B, Thompson GR, Sniderman AD, Forte TM, Krauss RM, et al. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia. Proceedings of the National Academy of Sciences of the United States of America 80: 6662–6666, 1983

    PubMed  CAS  Google Scholar 

  • Thompson PD, Cullinane EM, Sady SP, Flynn MM, Bernier DN, et al. Modest changes in high density lipoprotein concentration and metabolism with prolonged exercise training. Circulation 78: 25–34, 1988

    PubMed  CAS  Google Scholar 

  • Thompson PD, Cullinane EM, Sady SP, Flynn MM, Chenevert CB, et al. High density lipoprotein metabolism in endurance athletes and sedentary men. Circulation 84: 140–152, 1991

    PubMed  CAS  Google Scholar 

  • Thompson PD, Lazarus B, Cullinane LO, Henderson T, Musliner R et al. Exercise, diet or physical characteristics as determinants of HDL-levels in endurance athletes. Atherosclerosis 46: 333–339, 1983

    PubMed  CAS  Google Scholar 

  • Tran V, Weltman A. Differential effects of exercise on lipid and lipoprotein levels seen with changes in body weight: a meta analysis. Journal of the American Medical Association 254: 919–924, 1985

    PubMed  CAS  Google Scholar 

  • Tran V, Weltman A, Glass GV, Mood DP. The effects of exercise on blood lipids and lipoproteins: a meta-analysis of studies. Medicine and Science in Sports and Exercise 15: 393–402, 1983

    PubMed  CAS  Google Scholar 

  • Tsai MY, Yuan J, Hunninghake DB. Effect of gemfibrozil on composition of lipoproteins and distribution of LDL subspecies. Atherosclerosis 95: 35–42, 1992

    PubMed  CAS  Google Scholar 

  • Vague P, Juhan-Vague I, Aillaud MF, Badier C, Viard R, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 35: 250–253, 1986

    PubMed  CAS  Google Scholar 

  • Välimaki M, Laitinen K, Ylikahri R. The effect of moderate alcohol intake on serum apolipoprotein A-I containing lipoproteins and lipoprotein(a). Metabolism 40: 1168–1172, 1991

    PubMed  Google Scholar 

  • Välimäki I, Hursti ML, Philakoski L, Vükari J. Exercise performance and serum lipids in relation to physical activity and serum lipids in relation to physical activity in schoolchildren. International Journal of Sports Medicine 3: 132–136, 1980

    Google Scholar 

  • Verheugt FWA, Wouter ten Cate J, Sturk A, Imandt L, Verhorst PMJ, et al. Tissue plasminogen activator (t-PA) activity and inhibition in patients with myocardial infarction and normal coronary arteries. American Journal of Cardiology 59: 1075–1079, 1987

    PubMed  CAS  Google Scholar 

  • Vodak PA, Wood PD, Haskell WL, Williams PT. HDL-Cholesterol and other plasma lipid and lipoprotein concentrations in middleaged male and female tennis players. Metabolism 29: 745–752, 1980

    PubMed  CAS  Google Scholar 

  • Vyska K, Machulla H, Stremmel W, Faβbender D, Knapp W, et al. Regional myocardial free fatty acid extraction in normal and ischemic myocardium. Circulation 78: 1218–1233, 1988

    PubMed  CAS  Google Scholar 

  • Wallace MB, Moffatt RJ, Haymes EM, Green NR. Acute effects of resistance exercise on parameters of lipoprotein metabolism. Medicine and Science in Sports and Exercise 23: 199–204, 1991

    PubMed  CAS  Google Scholar 

  • Wilhelmsen L, Ssvärdsudd K, Korsan-Bengtsen K, Larsson B, Welin L, et al. Fibrinogen as a risk factor for stroke and myocardial infarction. New England Journal of Medicine 311: 501–505, 1984

    PubMed  CAS  Google Scholar 

  • Williams KJ, Petrie KA, Brocia RW, Swenson TL. Lipoprotein lipase modulates net secretory output of apolipoprotein-B in vitro — a possible pathophysiologic explanation for familial combined hyperlipidemia. Journal of Clinical Investigation 88: 1300–1306, 1991

    PubMed  CAS  Google Scholar 

  • Williams PT, Krauss RM, Vranizan KM, Albers JJ, Terry RB, et al. Effects of exercise-induced weight loss on low density lipoprotein subfractions in healthy men. Arteriosclerosis 9: 623–632, 1989

    PubMed  CAS  Google Scholar 

  • Williams PT, Krauss RM, Vranizan KM, Wood PDS. Changes in lipoprotein subfractions during diet-induced and exercise-induced weight loss in moderately overweight men. Circulation 81: 1293–1304, 1990

    PubMed  CAS  Google Scholar 

  • Williams PT, Krauss RM, Wood PD, Lindgren FT, Giotas C, et al. Lipoprotein subfractions of runners and sedentary men. Metabolism 35: 45–52, 1986

    PubMed  CAS  Google Scholar 

  • Williams PT, Wood PD, Haskell WL, Vranizan K. The effects of running mileage and duration on plasma lipoprotein levels. Journal of the American Medical Association 247: 2674–2679, 1982

    PubMed  CAS  Google Scholar 

  • Williams PT, Krauss RM, Vranizan KM, Albers JJ, Wood PDS. Effects of weight-loss by exercise and by diet on apolipoproteins A-I and A-II and thge particle size distribution of high density lipoproteins in men. Metabolism 41: 441–449, 1992

    PubMed  CAS  Google Scholar 

  • Williams RS, Logue EE, Lewis JL, Barton T, Stead NW, et al. Physical conditioning augments the fibrinolytic response to venous occlusion in healthy adults. New England Journal of Medicine 302: 987–991, 1980

    PubMed  CAS  Google Scholar 

  • Wirth A, Schlierf G, Schettler G. Körperliche Aktivität und Fettstoffwechsel. Klinische Wochenschrift 57: 1195–1201, 1979

    PubMed  CAS  Google Scholar 

  • Wood P, Haskell W. The effect of exercise on plasma high density lipoproteins. Lipids 14: 417–421, 1979

    PubMed  CAS  Google Scholar 

  • Wood PD, Haskell W, Klein H, Lewis S, Stern MP, et al. The distribution of plasma lipoproteins in middle-aged male runners. Metabolism 25: 1249–1257, 1976

    PubMed  CAS  Google Scholar 

  • Wood PD, Haskell WL, Blair SN, Williams PT, Krauss RM, et al. Increased exercise level and plasma lipoprotein concentrations: a one-year randomized, controlled study in sedentary middle-aged men. Metabolism 32: 31–39, 1983

    PubMed  CAS  Google Scholar 

  • Wood PD, Stefanick ML, Dreon DM, Frey-Hewitt B, Garay SC, et al. Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. New England Journal of Medicine 319: 1173–1179, 1988

    PubMed  CAS  Google Scholar 

  • Wood PD, Stefanick ML, Williams PT, Haskell WL. The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. New England Journal of Medicine 325: 461–466, 1991

    PubMed  CAS  Google Scholar 

  • Yalow RS, Glick SM, Roth J. Plasma insulin and growth hormone levels in obesity and diabetes. Annals of the New York Academy of Sciences 131: 357–373, 1965

    PubMed  CAS  Google Scholar 

  • Zambon A, Austin MA, Brown BG, Hokanson JE, Brunzell J. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease. Arteriosclerosis and Thrombosis 13: 147–153, 1993

    PubMed  CAS  Google Scholar 

  • Zampogna A, Luria MH, Manubens SJ, Luria MA. Relationship between lipids and occlusive coronary disease. Archives of Internal Medicine 140: 1067–1069, 1980

    PubMed  CAS  Google Scholar 

  • Zöllner N, Tato F. Fatty acid compostion of the diet: impact on serum lipids and atherosclerosis. Clinical Investigation 70: 968–1009, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, A., Frey, I., Baumstark, M.W. et al. Physical Activity and Lipoprotein Lipid Disorders. Sports Med. 17, 6–21 (1994). https://doi.org/10.2165/00007256-199417010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199417010-00002

Keywords

Navigation