Skip to main content
Log in

Central and Peripheral Aspects of Oxygen Transport and Adaptations with Exercise

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. Journal of Physiology 366: 233–249, 1985

    PubMed  CAS  Google Scholar 

  • Asmussen E, Nielsen M. Alveolar-arterial gas exchange at rest and during work at different O2 tensions. Acta Physiologia Scandinavica 50: 153–166, 1960

    Article  CAS  Google Scholar 

  • Barclay JK, Stainsby WN. The role of blood flow in limiting maximal metabolic rate in muscle. Medicine and Science in Sports 7: 116–119, 1975

    PubMed  CAS  Google Scholar 

  • Barton ED, Schaffartzik W, Poole DC, Hogan MC, Tsukimoto K, et al. The effect of altered hemoglobin concentration on O2 diffusion from blood to muscle at maximal exercise. FASEB Journal Part II 4(4): 3449, A861, 1990

    Google Scholar 

  • Bebout DE, Hogan MC, Wagner PD. The effects of exercise training and immobilization on V̇O2max and estimated diffusing capacity (DO2) in canine gastrocnemius muscle in situ. FASEB Journal Part II 4(4): 5494, A1212, 1990

    Google Scholar 

  • Cain SM. Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. Journal of Applied Physiology 42: 228–234, 1977

    PubMed  CAS  Google Scholar 

  • Cerretelli P, Di Prampero PE. Gas exchange in exercise. In Fishman et al. (Eds) Handbook of physiology — the respiratory system, Section 3, Vol. IV, chapt. 16, pp. 297–339, American Physiological Society, Bethesda, 1987

    Google Scholar 

  • Connett RJ, Honig CR. Regulation of V̇O2 in red muscle: do current biochemical hypotheses fit in vivo data? American Journal of Physiology 256: R898–R9060, 1989

    PubMed  CAS  Google Scholar 

  • Cymerman A, Reeves JT, Sutton RJ, Rock PB, Groves BM, et al. Operation Everest II: maximal oxygen uptake at extreme altitude. Journal of Applied Physiology 66(5): 2446–2453, 1989

    PubMed  CAS  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS. Exercise induced arterial hypoxemia in healthy human subjects at sea level. Journal of Physiology (London) 355: 161–175, 1984

    CAS  Google Scholar 

  • Evans DL, Rose RJ. Maximal oxygen uptake in racehorses: changes with training state and prediction from submaximal cardio-respiratory measurements. In Gillespie & Robinson (Eds) Equine exercise physiology 2, pp. 52–67, ICEEP Publications, 1987

    Google Scholar 

  • Federspiel WJ, Popel AS. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvascular Research 32: 164–189, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gale GE, Torre-Bueno Q, Moon R, Saltzman HA, Wagner PD. V̇,Q̇ inequality in normal humans during exercise at sea level and simulated altitude. Journal of Applied Physiology 58: 978–968, 1985

    PubMed  CAS  Google Scholar 

  • Gayeski TEJ, Connett RJ, Honig CR. Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Advanced Experimental Medical Biology 200: 487–494, 1987

    Article  Google Scholar 

  • Gayeski TEJ, Honig CR. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. American Journal of Physiology 254 (Heart Circulation Physiology 23): H1179–H1186, 1988

    PubMed  CAS  Google Scholar 

  • Gledhill N. Blood doping and related issues: a brief review. Medicine and Science in Sports and Exercise 14: 183–189, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gledhill N, Froese AB, Dempsey JA. Ventilation to perfusion distribution during exercise in health. In Dempsey & Reed (Eds) Muscular exercise and the lung, p. 325–343, University of Wisconsin Press, Madison, 1977

    Google Scholar 

  • Hammond MD, Gale GE, Kapitan KS, Ries A, Wagner PD. Pulmonary gas exchange in humans during exercise at sea level. Journal of Applied Physiology 60: 1590–1598, 1986

    PubMed  CAS  Google Scholar 

  • Hammond MD, Gale GE, Kapitan KS, Ries A, Wagner PD. Pulmonary gas exchange in humans during normobaric hypoxic exercise. Journal of Applied Physiology 61(5): 1749–1757, 1986

    PubMed  CAS  Google Scholar 

  • Hogan MC, Bebout DE, West JB, Wagner PD. Effect of altered Hb concentration on maximal O2 consumption in canine gastrocnemius in situ. FASEB Journal Part II 4(4): 5499, A1213, 1990

    Google Scholar 

  • Hogan MC, Roca J, Wagner PD, West JB. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. Journal of Applied Physiology 65: 815–821, 1988

    PubMed  CAS  Google Scholar 

  • Hogan MC, Roca J, West JB, Wagner PD. Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. Journal of Applied Physiology 66(3): 1919–1926, 1989

    Google Scholar 

  • Honig CR, Gayeski TEJ, Federspiel W, Clark Jr A, Clark P. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Advanced Experimental Medical Biology 169: 23–38, 1984

    CAS  Google Scholar 

  • Horstman DH, Gleser M, Delehunt J. Effects of altering O2 delivery on V̇O2 of isolated, working muscle. American Journal of Physiology 230: 327–334, 1976

    PubMed  CAS  Google Scholar 

  • Jones DP, Kennedy FG, Yee Aw T. Intracellular O2 gradients. In Sutton et al. (Eds) Hypoxia: the tolerable limits, chapt. 6. pp. 59–75, Benchmark Press, Inc, Indianapolis, 1988

    Google Scholar 

  • Mitchell JH, Sproule BJ, Chapman CB. The physiological meaning of the maximal oxygen intake test. Journal of Clinical Investigation 37: 538–547, 1958

    Article  PubMed  CAS  Google Scholar 

  • Persson SGB. On blood volume and working capacity in horses. Acta Veterinaria Scandinavica (Suppl.) 19: 1–189, 1967

    Google Scholar 

  • Persson SGB, Ekman L, Lydin G, Tufvesson G. Circulatory effects of splenectomy in the horse. I. Effect on red-cell distribution and variability of haematocrit in the peripheral blood. Zentralblatt fur Veterinar Medizin, Reihea A 20: 441–455, 1973

    Article  CAS  Google Scholar 

  • Piiper J, Meyer M, Scheid P. Dual role of diffusion in tissue gas exchange: blood-tissue equilibration and diffusion shunt. Respiration Physiology 56: 131–144, 1984

    Article  PubMed  CAS  Google Scholar 

  • Pirnay F, Lamy M, Dujardin J, Deroanne R, Petit JM. Analysis of femoral venous blood during maximum muscular exercise. Journal of Applied Physiology 33: 289–292, 1972

    PubMed  CAS  Google Scholar 

  • Powers SK, Lawler J, Dempsey JA, Dodd S, Landry G. Effects of incomplete pulmonary gas exchange on V̇O2max. Journal of Applied Physiology 66(6): 2491–2495, 1989

    PubMed  CAS  Google Scholar 

  • Roca J, Hogan MC, Story D, Bebout DE, Haab P, et al. Evidence for tissue diffusion limitation of V̇O2max in normal humans. Journal of Applied Physiology 67(1): 291–299, 1989

    PubMed  CAS  Google Scholar 

  • Rowell LB, Saltin B, Kiens B, Christensen NJ. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? American Journal of Physiology 251: H1038–H1044, 1986

    PubMed  CAS  Google Scholar 

  • Saltin B. Hemodynamic adaptations to exercise. American Journal of Cardiology 55: 42D–47D, 1985

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In Peachy et al. (Eds) Handbook of physiology, chapt. 19, section 10, skeletal muscle, pp. 555–631, Williams and Wilkins, Baltimore, 1983

    Google Scholar 

  • Stainsby WN, Brechue WF, O’Drobinak DM, Barclay JK. Oxidation/reduction state of cytochrome oxidase during repetitive contractions. Journal of Applied Physiology 67(5): 2158–2162, 1989

    PubMed  CAS  Google Scholar 

  • Taylor CR, Karas RH, Weibel ER, Hoppeler H. Adaptive variation in the mammalian respiratory system in relation to energetic demand: II. Reaching the limits to oxygen flow. Respiratory Physiology 69: 7–26, 1987

    Article  Google Scholar 

  • Torre-Bueno J, Wagner PD, Saltzman HA, Gale GE, Moon RE. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. Journal of Applied Physiology 58: 989–995, 1985

    PubMed  CAS  Google Scholar 

  • Wagner PD. The determinants of V̇O2max. Annals of Sports Medicine 4(4): 196–212, 1988a

    Google Scholar 

  • Wagner PD. An integrated view of the determinants of maximum oxygen uptake. In Gonzalez & Fedde (Eds) Oxygen transfer from atmosphere to tissues, Vol. 227, pp. 245–256, Plenum Press, New York, 1988b

    Chapter  Google Scholar 

  • Wagner PD, Ferrer A, Roca J. Synergistic interaction between diffusion and convection determining V̇O2max. FASEB Journal Part II 4(4): 4677, A1072, 1990

    Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno J, Stolp BW, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. Journal of Applied Physiology 60(1): 260–270, 1986

    Google Scholar 

  • Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves B, et al. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt Everest. Journal of Applied Physiology 63(6): 2348–2359, 1988

    Google Scholar 

  • Wasserman K, Whipp BJ. Exercise physiology in health and disease. American Review of Respiratory Disease 112: 219–249, 1975

    PubMed  CAS  Google Scholar 

  • Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system, Harvard University Press, Cambridge, 1984

    Google Scholar 

  • Welch HG. Hyperoxia and human performance: a brief review. Medicine and Science in Sports and Exercise 14: 253–262, 1983

    Google Scholar 

  • West JB (Ed). Respiration physiology — the essentials, 4th ed, Williams and Wilkins, Baltimore, 1990

    Google Scholar 

  • West JB, Boyer SJ, Graber DJ, Hackett PH, Maret KH, et al. Maximal exercise at extreme altitudes on Mount Everest. Journal of Applied Physiology 55(3): 688–698, 1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, P.D. Central and Peripheral Aspects of Oxygen Transport and Adaptations with Exercise. Sports Med 11, 133–142 (1991). https://doi.org/10.2165/00007256-199111030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199111030-00001

Keywords

Navigation