Skip to main content
Log in

Gut Hormones as Potential New Targets for Appetite Regulation and the Treatment of Obesity

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Food intake and bodyweight are tightly regulated by the brainstem, hypothalamus and reward circuits. These centres integrate diverse cognitive inputs with humoral and neuronal signals of nutritional status. Our knowledge of the role of gut hormones in this complex homeostatic system has expanded enormously in recent years. This review discusses both the role of gut hormones in appetite regulation, and the current state of development of gut hormone-based obesity therapies, with a particular focus on pancreatic polypeptide, peptide YY, amylin, glucagon-like peptide-1, oxyntomodulin, cholecystokinin and ghrelin. Several gut hormone-based treatments for obesity are under investigation in phase II and III clinical trials, and many more are in the pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kopelman PG. Obesity as a medical problem. Nature 2000 Apr 6; 404(6778): 635–43

    PubMed  CAS  Google Scholar 

  2. Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 1995 Apr 1; 122(7): 481–6

    PubMed  CAS  Google Scholar 

  3. National Audit Office. Tackling obesity in England: report by the Comptroller and Auditor General. London: The Stationery Office, 2001

    Google Scholar 

  4. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002 Oct 9; 288(14): 1723–7

    PubMed  Google Scholar 

  5. Katzmarzyk PT, Ardern CI. Overweight and obesity mortality trends in Canada, 1985–2000. Can J Public Health 2004 Jan–Feb; 95(1): 16–20

    PubMed  Google Scholar 

  6. deLooper M, Bhatia K. Australian health trends 2001: AIHW Cat. No. PHE 24. Canberra (ACT): Australian Institute of Health and Welfare, 2001

    Google Scholar 

  7. WHO Global InfoBase team. The SuRF report 2. Surveillance of chronic disease risk factors: country-level data and comparable estimates. Geneva: World Health Organization, 2005

    Google Scholar 

  8. Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Ped Obes 2006 Jan; 1(1): 11–25

    Google Scholar 

  9. Lobstein T, Jackson-Leach R. Estimated burden of paediatric obesity and co-morbidities in Europe. Part 2: numbers of children with indicators of obesity-related disease. Int J Ped Obes 2006 Jan; 1(1): 33–41

    Google Scholar 

  10. The ESRD Incidence Study Group. Divergent trends in the incidence of end-stage renal disease due to type 1 and type 2 diabetes in Europe, Canada and Australia during 1998–2002. Diabet Med 2006 Dec; 23(12): 1364–9

    Google Scholar 

  11. Ioannides-Demos LL, Proietto J, McNeil JJ. Pharmacotherapy for obesity. Drugs 2005; 65(10): 1391–418

    PubMed  CAS  Google Scholar 

  12. Dixon AF, Dixon JB, O'Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab 2005 Feb; 90(2): 813–9

    PubMed  CAS  Google Scholar 

  13. Weber M, Müller MK, Bucher T, et al. Laparoscopic gastric bypass is superior to laparoscopic gastric banding for treatment of morbid obesity. Ann Surg 2004 Dec; 240(6): 975–82

    PubMed  Google Scholar 

  14. Sjöström L, Lindroos A-K, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004 Dec 23; 351(26): 2683–93

    PubMed  Google Scholar 

  15. Jan JC, Hong D, Pereira N, et al. Laparoscopic adjustable gastric banding versus laparoscopic gastric bypass for morbid obesity: a single-institution comparison study of early results. J Gas-trointest Surg 2005 Jan; 9(1): 30–9

    Google Scholar 

  16. Mognol P, Chosidow D, Marmuse JP. Laparoscopic gastric bypass versus laparoscopic adjustable gastric banding in the super-obese: a comparative study of 290 patients. Obes Surg 2005 Jan; 15(1): 76–81

    PubMed  Google Scholar 

  17. Olbers T, Fagevik-Olsén M, Maleckas A, et al. Randomized clinical trial of laparoscopic Roux-en-Y gastric bypass versus laparoscopic vertical banded gastroplasty for obesity. Br J Surg 2005 May; 92(5): 557–62

    PubMed  CAS  Google Scholar 

  18. Parikh MS, Shen R, Weiner M, et al. Laparoscopic bariatric surgery in super-obese patients (BMI>50) is safe and effective: a review of 332 patients. Obes Surg 2005 Jun–Jul; 15(6): 858–63

    PubMed  Google Scholar 

  19. Kim TH, Daud A, Ude AO, et al. Early US outcomes of laparoscopic gastric bypass versus laparoscopic adjustable silicone gastric banding for morbid obesity. Surg Endosc 2006 Feb; 20(2): 202–9

    PubMed  CAS  Google Scholar 

  20. Cottam DR, Atkinson J, Anderson A, et al. A case-controlled matched-pair cohort study of laparoscopic Roux-en-Y gastric bypass and Lap-Band patients in a single US center with threeyear follow-up. Obes Surg 2006 May; 16(5): 534–40

    PubMed  Google Scholar 

  21. Galvani C, Gorodner M, Moser F, et al. Laparoscopic adjustable gastric band versus laparoscopic Roux-en-Y gastric bypass: ends justify the means? Surg Endosc 2006 Jun; 20(6): 934–41

    PubMed  CAS  Google Scholar 

  22. Bowne WB, Julliard K, Castro AE, et al. Laparoscopic gastric bypass is superior to adjustable gastric band in super morbidly obese patients: a prospective, comparative analysis. Arch Surg 2006 Jul; 141(7): 683–9

    PubMed  Google Scholar 

  23. Brolin RL, Robertson LB, Kenler HA, et al. Weight loss and dietary intake after vertical banded gastroplasty and Roux-en-Y gastric bypass. Ann Surg 1994 Dec; 220(6): 782–90

    PubMed  CAS  Google Scholar 

  24. Olbers T, Björkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg 2006 Nov; 244(5): 715–22

    PubMed  Google Scholar 

  25. Halmi KA, Mason E, Falk JR, et al. Appetitive behavior after gastric bypass for obesity. Int J Obes 1981; 5(5): 457–64

    PubMed  CAS  Google Scholar 

  26. Kenler HA, Brolin RE, Cody RP. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am J Clin Nutr 1990 Jul; 52(1): 87–92

    PubMed  CAS  Google Scholar 

  27. Kellum JM, Kuemmerle JF, O'Dorisio TM, et al. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg 1990 Jun; 211(6): 763–70

    PubMed  CAS  Google Scholar 

  28. Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am Surg 2004 Jan; 70(1): 1–4

    PubMed  Google Scholar 

  29. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 2004 Aug; 240(2): 236–42

    PubMed  Google Scholar 

  30. Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg 2005 Apr; 15(4): 474–81

    PubMed  Google Scholar 

  31. le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006 Jan; 243(1): 108–14

    PubMed  Google Scholar 

  32. Koopmans HS, Sclafani A. Control of body weight by lower gut signals. Int J Obes 1981; 5(5): 491–5

    PubMed  CAS  Google Scholar 

  33. Koopmans HS, Sclafani A, Fichtner C, et al. The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr 1982 Feb; 35(2): 284–93

    PubMed  CAS  Google Scholar 

  34. Boozer CN, Choban PS, Atkinson RL. Ileal transposition surgery attenuates the increased efficiency of weight gain on a high-fat diet. Int J Obes 1990 Oct; 14(10): 869–78

    PubMed  CAS  Google Scholar 

  35. Chen DC, Stern JS, Atkinson RL. Effects of ileal transposition on food intake, dietary preference, and weight gain in Zucker obese rats. Am J Physiol 1990 Jan; 258 (1 Pt 2): R269–73

    PubMed  CAS  Google Scholar 

  36. Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005 Feb; 288(2): E447–53

    PubMed  CAS  Google Scholar 

  37. Ferri GL, Koopmans HS, Ghatei MA, et al. Ileal enteroglucagon cells after ileal-duodenal transposition in the rat. Digestion 1983; 26(1): 10–6

    PubMed  CAS  Google Scholar 

  38. Koopmans HS, Ferri GL, Sarson DL, et al. The effects of ileal transposition and jejunoileal bypass on food intake and GI hormone levels in rats. Physiol Behav 1984 Oct; 33(4): 601–9

    PubMed  CAS  Google Scholar 

  39. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2006 May; 91(5): 1735–40

    PubMed  CAS  Google Scholar 

  40. Stoeckli R, Chanda R, Langer I, et al. Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass. Obes Res 2004 Feb; 12(2): 346–50

    PubMed  CAS  Google Scholar 

  41. Frühbeck G, Diez-Caballero A, Gil MJ, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg 2004 May; 14(5): 606–12

    PubMed  Google Scholar 

  42. Nijhuis J, van Dielen FM, Buurman WA, et al. Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study. Obes Surg 2004 Jun–Jul; 14(6): 783–7

    PubMed  Google Scholar 

  43. Morinigo R, Casamitjana R, Moize V, et al. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res 2004 Jul; 12(7): 1108–16

    PubMed  Google Scholar 

  44. Schindler K, Prager G, Ballaban T, et al. Impact of laparoscopic adjustable gastric banding on plasma ghrelin, eating behaviour and body weight. Eur J Clin Invest 2004 Aug; 34(8): 549–54

    PubMed  CAS  Google Scholar 

  45. Foschi D, Corsi F, Rizzi A, et al. Vertical banded gastroplasty modifies plasma ghrelin secretion in obese patients. Obes Surg 2005 Sep; 15(8): 1129–32

    PubMed  CAS  Google Scholar 

  46. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass surgery suggests gut adaptation and explains altered satiety. Br J Surg 2006 Feb; 93(2): 210–5

    PubMed  CAS  Google Scholar 

  47. Mancini MC, Costa AP, de Melo ME, et al. Effect of gastric bypass on spontaneous growth hormone and ghrelin release profiles. Obesity 2006 Mar; 14(3): 383–7

    PubMed  CAS  Google Scholar 

  48. Andrews NJ, Irving MH. Human gut hormone profiles in patients with short bowel syndrome. Dig Dis Sci 1992 May; 37(5): 729–32

    PubMed  CAS  Google Scholar 

  49. Glover I, Haneef I, Pitts J, et al. Conformational flexibility in a small globular hormone: x-ray analysis of avian pancreatic polypeptide at 0.98-Å resolution. Biopolymers 1983 Jan; 22(1): 293–304

    PubMed  CAS  Google Scholar 

  50. Larsson LI, Sundler F, Hakanson R. Immunochemical localization of human pancreatic polypeptide (HPP) to a population of islet cells. Cell Tissue Res 1975; 156(2): 167–71

    PubMed  CAS  Google Scholar 

  51. Adrian TE, Bloom SR, Bryant MG, et al. Distribution and release of human pancreatic polypeptide. Gut 1976 Dec; 17(12): 940–4

    PubMed  CAS  Google Scholar 

  52. Ekblad E, Sundler F. Distribution of pancreatic polypeptide and peptide YY. Peptides 2002 Feb; 23(2): 251–61

    PubMed  CAS  Google Scholar 

  53. Track NS, McLeod RS, Mee AV. Human pancreatic polypeptide: studies of fasting and postprandial plasma concentrations. Can J Physiol Pharmacol 1980 Dec; 58(12): 1484–9

    PubMed  CAS  Google Scholar 

  54. Parkinson C, Drake WM, Roberts ME, et al. A comparison of the effects of pegvisomant and octreotide on glucose, insulin, gastrin, cholecystokinin, and pancreatic polypeptide responses to oral glucose and a standard mixed meal. J Clin Endocrinol Metab 2002 Apr; 87(4): 1797–804

    PubMed  CAS  Google Scholar 

  55. Uhe AM, Szmukler GI, Collier GR, et al. Potential regulators of feeding behavior in anorexia nervosa. Am J Clin Nutr 1992 Jan; 55(1): 28–32

    PubMed  CAS  Google Scholar 

  56. Fujimoto S, Inui A, Kiyota N, et al. Increased cholecystokinin and pancreatic polypeptide responses to a fat-rich meal in patients with restrictive but not bulimic anorexia nervosa. Biol Psychiatry 1997 May 15; 41(10): 1068–70

    PubMed  CAS  Google Scholar 

  57. Lassmann V, Vague P, Vialettes B, et al. Low plasma levels of pancreatic polypeptide in obesity. Diabetes 1980 Jun; 29(6): 428–30

    PubMed  CAS  Google Scholar 

  58. Glaser B, Zoghlin G, Pienta K, et al. Pancreatic polypeptide response to secretin in obesity: effects of glucose intolerance. Horm Metab Res 1988 May; 20(5): 288–92

    PubMed  CAS  Google Scholar 

  59. Lieverse RJ, Masclee AA, Jansen JB, et al. Plasma cholecystokinin and pancreatic polypeptide secretion in response to bombesin, meal ingestion and modified sham feeding in lean and obese persons. Int J Obes Relat Metab Disord 1994 Feb; 18(2): 123–7

    PubMed  CAS  Google Scholar 

  60. Zipf WB, O'Dorisio TM, Cataland S, et al. Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi syndrome. J Clin Endocrinol Metab 1981 Jun; 52(6): 1264–6

    PubMed  CAS  Google Scholar 

  61. Zipf WB, O'Dorisio TM, Cataland S, et al. Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader-Willi syndrome. J Clin Endocrinol Metab 1983 Nov; 57(5): 1074–80

    PubMed  CAS  Google Scholar 

  62. Jorde R, Burhol PG. Fasting and postprandial plasma pancraetic polypeptide (PP) levels in obesity. Int J Obes 1984; 8(5): 393–7

    PubMed  CAS  Google Scholar 

  63. Meryn S, Stein D, Straus EW. Fasting- and meal-stimulated peptide hormone concentrations before and after gastric surgery for morbid obesity. Metabolism 1986 Sep; 35(9): 798–802

    PubMed  CAS  Google Scholar 

  64. Wisen O, Bjorvell H, Cantor P, et al. Plasma concentrations of regulatory peptides in obesity following modified sham feeding (MSF) and a liquid test meal. Regul Pept 1992 Apr 29; 39(1): 43–54

    PubMed  CAS  Google Scholar 

  65. Jorde R, Burhol PG. Effect of jejunoileal bypass operation and Billroth II resection on postprandial plasma pancreatic polypeptide release. Scand J Gastroenterol 1982 Aug; 17(5): 613–7

    PubMed  CAS  Google Scholar 

  66. Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med 2003 Mar; 228(3): 217–44

    CAS  Google Scholar 

  67. Kanatani A, Mashiko S, Murai N, et al. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Yl receptor-deficient, and Y5 receptordeficient mice. Endocrinology 2000 Mar; 141(3): 1011–6

    PubMed  CAS  Google Scholar 

  68. Larsen PJ, Kristensen P. The neuropeptide Y (Y4) receptor is highly expressed in neurones of the rat dorsal vagal complex. Mol Brain Res 1997 Aug; 48(1): 1–6

    PubMed  CAS  Google Scholar 

  69. Whitcomb DC, Taylor IL, Vigna SR. Characterization of saturable binding sites for circulating pancreatic polypeptide in rat brain. Am J Physiol 1990 Oct; 259(4): G687–91

    PubMed  CAS  Google Scholar 

  70. Inui A, Okita M, Miura M, et al. Plasma and cerebroventricular fluid levels of pancreatic polypeptide in the dog: effects of feeding, insulin-induced hypoglycaemia, and physical exercise. Endocrinology 1993 Mar; 132(3): 1235–9

    PubMed  CAS  Google Scholar 

  71. Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 2003 May; 124(5): 1325–36

    PubMed  CAS  Google Scholar 

  72. McTigue DM, Rogers RC. Pancreatic polypeptide stimulates gastric motility through a vagal-dependent mechanism in rats. Neurosci Lett 1995 Mar 24; 188(2): 93–6

    PubMed  CAS  Google Scholar 

  73. Malaisse-Lagae F, Carpentier JL, Patel YC, et al. Pancreatic polypeptide: a possible role in the regulation of food intake in the mouse. Hypothesis Experientia 1977 Jul 15; 33(7): 915–7

    CAS  Google Scholar 

  74. Asakawa A, Inui A, Ueno N, et al. Mouse pancreatic polypeptide modulates food intake, while not influencing anxiety in mice. Peptides 1999 Dec; 20(12): 1445–8

    PubMed  CAS  Google Scholar 

  75. Ueno N, Inui A, Iwamoto M, et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 1999 Dec; 117(6): 1427–43

    PubMed  CAS  Google Scholar 

  76. Clark JT, Kalra PS, Crowley WR, et al. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984 Jul; 115(1): 427–9

    PubMed  CAS  Google Scholar 

  77. Campbell RE, Smith MS, Allen SE. Orexin neurons express a functional pancreatic polypeptide Y4 receptor. J Neurosci 2003 Feb 15; 23(4): 1487–97

    PubMed  CAS  Google Scholar 

  78. Okumura T, Pappas TN, Taylor IL. Intracisternal injection of pancreatic polypeptide stimulates gastric emptying in rats. Neurosci Lett 1994 Aug 29; 178(1): 167–70

    PubMed  CAS  Google Scholar 

  79. Batterham RL, le Roux CW, Cohen MA, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003 Aug; 88(8): 3989–92

    PubMed  CAS  Google Scholar 

  80. Berntson GG, Zipf WB, O'Dorisio TM, et al. Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome. Peptides 1993 May–Jun; 14(3): 497–503

    PubMed  CAS  Google Scholar 

  81. Schmidt PT, Näslund E, Grybäck P, et al. A role for pancreatic polypeptide in the regulation of gastric emptying and shortterm metabolic control. J Clin Endocrinol Metab 2005 Sep; 90(9): 5241–6

    PubMed  CAS  Google Scholar 

  82. TM Pharma. Press release: 7TM Pharma's new first-in-class anti-obesity drug completes phase I/II clinical studies [online]. Available from URL: http://www.7tm.com/Website/Mediagallery/7TM.PressRelease.March20.2006.pdf[Accessed 2006 Nov 24]

  83. Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 1980 Jun 5; 285(5764): 417–8

    PubMed  CAS  Google Scholar 

  84. Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(l–36). Peptides 1989 Jul–Aug; 10(4): 797–803

    PubMed  CAS  Google Scholar 

  85. Mentlein R, Dahms P, Grandt D, et al. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993 Dec 10; 49(2): 133–44

    PubMed  CAS  Google Scholar 

  86. Abbott CR, Small CJ, Kennedy AR, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res 2005 May 10; 1043(1–2): 139–44

    PubMed  CAS  Google Scholar 

  87. Talsania T, Anini Y, Siu S, et al. Peripheral exendin-4 and peptide YY3-36 synergistically reduce food intake through different mechanisms in mice. Endocrinology 2005 Sep; 146(9): 3748–56

    PubMed  CAS  Google Scholar 

  88. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002 Aug 8; 418(6898): 650–4

    PubMed  CAS  Google Scholar 

  89. Pedersen-Bjergaard U, Host U, Kelbaek H, et al. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand J Clin Lab Invest 1996 Oct; 56(6): 497–503

    PubMed  CAS  Google Scholar 

  90. Batterham RL, Heffron H, Kapoor S, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006 Sep; 4(3): 223–33

    PubMed  CAS  Google Scholar 

  91. Adrian TE, Ferri GL, Bacarese-Hamilton AJ. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985 Nov; 89(5): 1070–7

    PubMed  CAS  Google Scholar 

  92. Fu-Cheng X, Anini Y, Chariot J, et al. Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural regulation by proximal gut. Pflügers Arch Eur J Physiol 1997 Mar; 433(5): 571–9

    CAS  Google Scholar 

  93. Oesch S, Rüegg C, Fischer B, et al. Effect of gastric distension prior to eating on food intake and feelings of satiety in humans. Physiol Behav 2006 May 30; 87(5): 903–10

    PubMed  CAS  Google Scholar 

  94. Tschöp M, Castañeda TR, Joost HG, et al. Physiology: does gut hormone PYY3-36 decrease food intake in rodents? [Published erratum appears in Nature 2004 Sep 23; 431 (7007): 1038]. Nature 2004 Jul 8; 430(6996): 1 p following 165; discussion 2 p following 165

    PubMed  Google Scholar 

  95. Boggiano MM, Chandler PC, Oswald KD, et al. PYY3-36 as an anti-obesity drug target. Obes Rev 2005 Nov; 6(4): 307–22

    PubMed  CAS  Google Scholar 

  96. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003 Sep 4; 349(10): 941–8

    PubMed  CAS  Google Scholar 

  97. Challis BG, Pinnock SB, Coll AP, et al. Acute effects of PYY336 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem Biophys Res Commun 2003 Nov 28; 311(4): 915–9

    PubMed  CAS  Google Scholar 

  98. Challis BG, Coll AP, Yeo GS, et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3-36. Proc Natl Acad Sci U S A 2004 Mar 30; 101(13): 4695–700

    PubMed  CAS  Google Scholar 

  99. Martin NM, Small CJ, Sajedi A, et al. Pre-obese and obese agouti mice are sensitive to the anorectic effects of peptide YY3-36 but resistant to ghrelin. Int J Obes 2004 Jul; 28(7): 886–93

    CAS  Google Scholar 

  100. Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of peptide YY3-36 potently inhibits food intake in rats. Endocrinology 2005 Feb; 146(2): 879–88

    PubMed  CAS  Google Scholar 

  101. Moran TH, Smedh U, Kinzig KP, et al. Peptide YY3-36 inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 2005 Feb; 288(2): R384–8

    PubMed  CAS  Google Scholar 

  102. Neary NM, Small CJ, Druce MR, et al. Peptide YY3-36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 2005 Dec; 146(12): 5120–7

    PubMed  CAS  Google Scholar 

  103. Degen L, Oesch S, Casanova M, et al. Effect of peptide YY3-36 on food intake in humans. Gastroenterology 2005 Nov; 129(5): 1430–6

    PubMed  CAS  Google Scholar 

  104. Unniappan S, Mclntosh CHS, Demuth H-U, et al. Effects of dipeptidyl peptidase IV on the satiety actions of peptide YY. Diabetologia 2006 Aug; 49(8): 1915–23

    PubMed  CAS  Google Scholar 

  105. Ito T, Thidarmyint H, Murata T, et al. Effects of peripheral administration of PYY3-36 on feed intake and plasma acylghrelin levels in pigs. J Endocrinol 2006 Oct; 191(1): 113–9

    PubMed  CAS  Google Scholar 

  106. Pittner RA, Moore CX, Bhavsar SP, et al. Effects of PYY3-36 in rodent models of diabetes and obesity. Int J Obes 2004 Aug; 28(8): 963–71

    CAS  Google Scholar 

  107. Koegler FH, Enriori PJ, Billes SK, et al. Peptide YY3-36 inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes 2005 Nov; 54(11): 3198–204

    PubMed  CAS  Google Scholar 

  108. Sileno AP, Brandt GC, Spann BM, et al. Lower mean weight after 14 days intravenous administration peptide YY3-36 (PYY3-36) in rabbits. Int J Obes 2006 Jan; 30(1): 68–72

    CAS  Google Scholar 

  109. Chelikani PK, Haver AC, Reeve Jr JR, et al. Daily, intermittent intravenous infusion of peptide YY3-36 reduces daily food intake and adiposity in rats. Am J Physiol Regul Integr Comp Physiol 2006 Feb; 290(2): R298–305

    PubMed  CAS  Google Scholar 

  110. Adams SH, Lei C, Jodka CM, et al. PYY3-36 administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 2006 Jan; 136(1): 195–201

    PubMed  CAS  Google Scholar 

  111. Pfluger PT, Kampe J, Castaneda TR, et al. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. J Clin Endocrinol Metab 2007 Feb; 92(2): 583–8

    PubMed  CAS  Google Scholar 

  112. le Roux CW, Batterham RL, Aylwin SJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 2006 Jan; 147(1): 3–8

    PubMed  Google Scholar 

  113. Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995 Nov; 1(11): 1155–61

    PubMed  CAS  Google Scholar 

  114. Amylin. PYY 3-36 [online]. Available from URL: http://www.amylin.com/pipeline/pyy336.cfm[Accessed 2007 Dec 3]

  115. Nastech Pharmaceutical Company Ltd. Intranasal PYY3-36 for obesity [online]. Available from URL: http://www.nastech.com/nastech/pyy [Accessed 2007 Dec 3]

  116. ClinicalTrials.gov. A study of nasal PYY3-36 and placebo for weight loss in obese subjects [online]. Available from URL: http://clinicaltrials.gov/ct/show/NCT00537420[Accessed 2007 Dec 3]

  117. Gantz I, Erondu N, Mallick M, et al. Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J Clin Endocrinol Metab 2007 May; 92(5): 1754–7

    PubMed  CAS  Google Scholar 

  118. Butler PC, Chou J, Carter WB, et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990 Jun; 39(6): 752–6

    PubMed  CAS  Google Scholar 

  119. Moore CX, Cooper GJS. Co-secretion of amylin and insulin from cultured islet β-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem Biophys Res Comm 1991 Aug 30; 179(1): 1–9

    PubMed  CAS  Google Scholar 

  120. Chen W-J, Armour S, Way J, et al. Expression cloning and receptor pharmacology of human calcitonin receptors from MCF-7 cells and their relationship to amylin receptors. Mol Pharmacol 1997 Dec; 52(6): 1164–75

    PubMed  CAS  Google Scholar 

  121. McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998 May 28; 393(6683): 333–9

    PubMed  CAS  Google Scholar 

  122. Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999 Jul; 56(1): 235–42

    PubMed  CAS  Google Scholar 

  123. Riediger T, Schmid HA, Lutz T, et al. Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol 2001 Dec; 281(6): 1833–43

    Google Scholar 

  124. Lutz TA, Geary N, Szabady MM, et al. Amylin decreases meal size in rats. Physiol Behav 1995 Dec; 58(6): 1197–202

    PubMed  CAS  Google Scholar 

  125. Rushing PA, Hagan MM, Seeley RJ, et al. Amylin: a novel action in the brain to reduce body weight. Endocrinology 2000 Feb; 141(2): 850–3

    PubMed  CAS  Google Scholar 

  126. Rushing PA, Seeley RJ, Air EL, et al. Acute 3rd-ventricular amylin infusion potently reduces food intake but does not produce aversive consequences. Peptides 2002 May; 23(5): 985–8

    PubMed  CAS  Google Scholar 

  127. Silvestre RA, Rodríguez-Gallardo J, Jodka C, et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am J Physiol 2001 Mar; 280(3): E443–9

    CAS  Google Scholar 

  128. Young AA, Gedulin BR, Rink TJ. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36)NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 1996 Jan; 45(1): 1–3

    PubMed  CAS  Google Scholar 

  129. Whitehouse F, Kruger DF, Fineman M, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 2002 Apr; 25(4): 724–30

    PubMed  CAS  Google Scholar 

  130. Hollander PA, Levy P, Fineman MS, et al. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes. Diabetes Care 2003 Mar; 26(3): 784–90

    PubMed  CAS  Google Scholar 

  131. Ratner RE, Dickey R, Fineman M, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet Med 2004 Nov; 21(11): 1204–12

    PubMed  CAS  Google Scholar 

  132. Edelman S, Garg S, Frias J, et al. A double-blind, placebocontrolled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care 2006 Oct; 29(10): 2189–95

    PubMed  CAS  Google Scholar 

  133. Aronne L, Fujioka K, Aroda V, et al. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab 2007 Aug; 92(8): 2977–83

    PubMed  CAS  Google Scholar 

  134. Amylin. Pramlitide for obesity [online]. Available from URL: http://amylin.com/pipeline/pramlintide.cfm[Accessed 2007 Dec 3]

  135. Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 1986 Sep 5; 261(25): 11880–9

    PubMed  CAS  Google Scholar 

  136. Tucker JD, Dhanvantari S, Brubaker PL. Proglucagon processing in islet and intestinal cell lines. Regul Pept 1996 Apr 9; 62(1): 29–35

    PubMed  CAS  Google Scholar 

  137. Ørskov C, Rabenhoj L, Wettergren A, et al. Tissue and plasma concentrations of amidated and glycine-extended glucagonlike peptide I in humans. Diabetes 1994 Apr; 43(4): 535–9

    PubMed  Google Scholar 

  138. Weir GC, Mojsov S, Hendrick GK, et al. Glucagonlike peptide I (7–37) actions on endocrine pancreas. Diabetes 1989 Mar; 38(3): 338–42

    PubMed  CAS  Google Scholar 

  139. Ørskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 1993 May; 42(5): 658–61

    PubMed  Google Scholar 

  140. Herrmann C, Göke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56(2): 117–26

    PubMed  CAS  Google Scholar 

  141. Rocca AS, LaGreca J, Kalitsky J, et al. Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology 2001 Mar; 142(3): 1148–55

    PubMed  CAS  Google Scholar 

  142. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999 Apr; 140(4): 1687–94

    PubMed  CAS  Google Scholar 

  143. Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987 Dec 5; II(8571): 1300–4

    Google Scholar 

  144. Gutniak M, Ørskov C, Holst JJ, et al. Antidiabetogenic effect of glucagon-like peptide-1 (7—36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992 May 14; 326(20): 1316–22

    PubMed  CAS  Google Scholar 

  145. Willms B, Werner J, Holst JJ, et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996 Jan; 81(1): 327–32

    PubMed  CAS  Google Scholar 

  146. Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996 Jan 4; 379(6560): 69–72

    PubMed  CAS  Google Scholar 

  147. Tang-Christensen M, Larsen PJ, Göke R, et al. Central administration of GLP-l-(7–36) amide inhibits food and water intake in rats. Am J Physiol 1996 Oct; 271(4): R848–56

    PubMed  CAS  Google Scholar 

  148. Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998 Feb 1; 101(3): 515–20

    PubMed  CAS  Google Scholar 

  149. Näslund E, Gutniak M, Skogar S, et al. Glucagon-like peptide 1 increases the period of postprandial satiety and slow gastric emptying in obese men. Am J Clin Nutr 1998 Sep; 68(3): 525–30

    PubMed  Google Scholar 

  150. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallelgroup study. Lancet 2002 Mar 9; 359(9309): 824–30

    PubMed  CAS  Google Scholar 

  151. Kieffer TJ, Mclntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995 Aug; 136(8): 3585–96

    PubMed  CAS  Google Scholar 

  152. Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, and exendin-3 analogue, from Heloderma suspectum venom. J Biol Chem 1992 Apr 15; 267(11): 7402–5

    PubMed  CAS  Google Scholar 

  153. Kim D, MacConnell L, Zhuang D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007 Jun; 30(6): 1487–93

    PubMed  CAS  Google Scholar 

  154. Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004 Nov; 27(11): 2628–35

    PubMed  CAS  Google Scholar 

  155. Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005 May; 28(5): 1083–91

    PubMed  CAS  Google Scholar 

  156. DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005 May; 28(5): 1092–100

    PubMed  CAS  Google Scholar 

  157. Heine RJ, Van Gaal LF, Johns D, et al. Exenatide versus glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005 Oct 18; 143(8): 559–69

    PubMed  CAS  Google Scholar 

  158. Ratner RE, Maggs D, Nielsen LL, et al. Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2006 Jul; 8(4): 419–28

    PubMed  CAS  Google Scholar 

  159. Riddle MC, Henry RR, Poon TH, et al. Exenatide elicits sustained glycaemic control and progressive reduction of body weight in patients with type 2 diabetes inadequately controlled by sulphonylureas with or without metformin. Diabetes Metab Res Rev 2006 Nov–Dec; 22(6): 483–91

    PubMed  CAS  Google Scholar 

  160. Nauck MA, Hompesch M, Filipczak R, et al. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 2006 Sep; 114(8): 417–23

    PubMed  CAS  Google Scholar 

  161. Feinglos MN, Saad MF, Pi-Sunyer FX, et al. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and bodyweight in subjects with type 2 diabetes. Diabet Med 2005 Aug; 22(8): 1016–23

    PubMed  CAS  Google Scholar 

  162. ClinicalTrials.gov. The effect of liraglutide on body weight in obese subjects without diabetes: an extension to trial NN80221807 [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00480909[Accessed 2007 Dec 3]

  163. ConjuChem. PC-DAC™: exendin-4 (CJC-1134-PC) [online]. Available from URL: http://conjuchem.hyphenhealth.com/products/PCDACExendin4.shtml[Accessed 2006 Dec 18]

  164. ConjuChem. New study of PC-DAC™: exendin-4 for type 2 diabetes confirms excellent tolerability, efficacy, and extended duration of activity [online]. Available from URL: http://conjuchem.hyphenhealth.com/news/PR_EN_October_20_2006_1134.pdf [Accessed 2006 Dec 18]

  165. Baggio LL, Huang Q, Brown TJ, et al. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 2004 Sep; 53(9): 2492–500

    PubMed  CAS  Google Scholar 

  166. IPSEN. Oncology: strong franchise and active life cycle management of products [online]. Available from URL: http://www.ipsen.com/?page=researchdevelopment&content;=projects [Accessed 2007 Dec 3]

  167. de Meester I, Lambeir AM, Proost P, et al. Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPPIV. Adv Exp Med Biol 2003; 524: 3–17

    Google Scholar 

  168. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagonlike peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004 Mar 2; 109(8): 962–5

    PubMed  CAS  Google Scholar 

  169. Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006 Dec; 12(9): 694–9

    PubMed  CAS  Google Scholar 

  170. Bataille D, Tatemoto K, Gespach C, et al. Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum: characterization of the peptide. FEBS Lett 1982 Sep 6; 146(1): 79–86

    PubMed  CAS  Google Scholar 

  171. Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 1983 Apr 21; 302(5910): 716–8

    PubMed  CAS  Google Scholar 

  172. Bell GI, Sanchez-Pescador R, Laybourn PJ, et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983 Jul 28; 304(5924): 368–71

    PubMed  CAS  Google Scholar 

  173. Ghatei MA, Uttenthal LO, Christofides ND, et al. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J Clin Endocrinol Metab 1983 Sep; 57(3): 488–95

    PubMed  CAS  Google Scholar 

  174. Le Quellec A, Kervran A, Blache P, et al. Oxyntomodulin-like immunoreactivity: diurnal profile of a new potential enterogastrone. J Clin Endocrinol Metab 1992 Jun; 74(6): 1405–9

    PubMed  Google Scholar 

  175. Bataille D, Gespach C, Coudray AM, et al. ‘Enteroglucagon’: a specific effect on gastric glands isolated from the rat fundus: evidence for an ‘oxyntomodulin’ action. Biosci Rep 1981 Feb; 1(2): 151–5

    PubMed  CAS  Google Scholar 

  176. Biedzinski TM, Bataille D, Devaux MA, et al. The effect of oxyntomodulin (glucagon-37) and glucagon on exocrine pancreatic secretion in the conscious rat. Peptides 1987 Nov–Dec; 8(6): 967–72

    PubMed  CAS  Google Scholar 

  177. Dubrasquet M, Bataille D, Gespach C. Oxyntomodulin (glucagon-37 or bioactive enteroglucagon): a potent inhibitor of pentagastrin-stimulated acid secretion in rats. Biosci Rep 1982 Jun; 2(6): 391–5

    PubMed  CAS  Google Scholar 

  178. Schjoldager B, Mortensen PE, Myhre J, et al. Oxyntomodulin from distal gut: role in regulation of gastric and pancreatic functions. Dig Dis Sci 1989 Sep; 34(9): 1411–9

    PubMed  CAS  Google Scholar 

  179. Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001 Oct; 142(10): 4244–50

    PubMed  CAS  Google Scholar 

  180. Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004 Jun; 145(6): 2687–95

    PubMed  CAS  Google Scholar 

  181. Baggio LL, Huang Q, Brown TJ, et al. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 2004 Aug; 127(2): 546–58

    PubMed  CAS  Google Scholar 

  182. Dakin CL, Small CJ, Park AJ, et al. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 2002 Dec; 283(6): El 173–7

    Google Scholar 

  183. Chaudhri OB, Parkinson JR, Kuo YT, et al. Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganeseenhanced magnetic resonance imaging. Biochem Biophys Res Commun 2006 Nov 17; 350(2): 298–306

    PubMed  CAS  Google Scholar 

  184. Cohen MA, Ellis SM, le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003 Oct; 88(10): 4696–701

    PubMed  CAS  Google Scholar 

  185. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005 Aug; 54(8): 2390–5

    PubMed  CAS  Google Scholar 

  186. Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond) 2006 Dec; 30(12): 1729–36

    CAS  Google Scholar 

  187. Druce MR. Gut hormones and the peripheral and central control of energy homeostasis [PhD thesis]. London: Imperial College London, 2007

    Google Scholar 

  188. Thiakis. Oxyntomodulin [online]. Available from URL: http://www.thiakis.com/oxyntomodulin.asp[Accessed 2006 Dec 30]

  189. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973 Sep; 84(3): 488–95

    PubMed  CAS  Google Scholar 

  190. Rehfeld JF, Sun G, Christensen T, et al. The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33. J Clin Endocrinol Metab 2001 Jan; 86(1): 251–8

    PubMed  CAS  Google Scholar 

  191. Polak JM, Bloom SR, Rayford PL, et al. Identification of cholecystokinin-secreting cells. Lancet 1975 Nov 22; II(7943): 1016–8

    Google Scholar 

  192. Liddle RA, Goldfine ID, Rosen MS, et al. Cholecystokinin bioactivity in human plasma: molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 1985 Apr; 75(4): 1144–52

    PubMed  CAS  Google Scholar 

  193. Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev 2006 Jul; 86(3): 805–47

    PubMed  CAS  Google Scholar 

  194. Hutchison JB, Dimaline R, Dockray GJ. Neuropeptides in the gut: quantification and characterization of cholecystokinin octapeptide-, bombesin- and vasoactive intestinal polypeptide-like immunoreactivities in the myenteric plexus of the guineapig small intestine. Peptides 1981 Spring; 2(1): 23–30

    PubMed  CAS  Google Scholar 

  195. Barden N, Merand Y, Rouleau D, et al. Regional distributions of somatostatin and cholecystokinin-like immunoreactivities in rat and bovine brain. Peptides 1981; 2(3): 299–302

    PubMed  CAS  Google Scholar 

  196. Asin KE, Gore Jr PA, Bednarz L, et al. Effects of selective CCK receptor agonists on food intake after central or peripheral administration in rats. Brain Res 1992 Jan 31; 571(1): 169–74

    PubMed  CAS  Google Scholar 

  197. Moran TH, Baldessarini AR, Salorio CF, et al. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol 1997 Apr; 272 (4 Pt 2): R1245–51

    PubMed  CAS  Google Scholar 

  198. Ritter RC, Ladenheim EE. Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am J Physiol 1985 Apr; 248 (4 Pt 2): R501–4

    PubMed  CAS  Google Scholar 

  199. Maclean DB. Abrogation of peripheral cholecystokinin-satiety in the capsaicin treated rat. Regul Pept 1985 Aug; 11(4): 321–33

    PubMed  CAS  Google Scholar 

  200. Kopin AS, Mathes WF, McBride EW, et al. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 1999 Feb; 103(3): 383–91

    PubMed  CAS  Google Scholar 

  201. Beglinger C, Degen L, Matzinger D, et al. Loxiglumide, a CCKA receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 2001 Apr; 280(4): R1149–54

    PubMed  CAS  Google Scholar 

  202. Kissileff HR, Pi-Sunyer FX, Thornton J, et al. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 1981 Feb; 34(2): 154–60

    PubMed  CAS  Google Scholar 

  203. Pi-Sunyer X, Kissileff HR, Thornton J, et al. C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol Behav 1982 Oct; 29(4): 627–30

    PubMed  CAS  Google Scholar 

  204. Lieverse RJ, Jansen JB, van de Zwan A, et al. Effects of a physiological dose of cholecystokinin on food intake and postprandial satiation in man. Regul Pept 1993 Jan 22; 43(1–2):83–9

    PubMed  CAS  Google Scholar 

  205. Lieverse RJ, Jansen JB, Masclee AM, et al. Satiety effects of cholecystokinin in humans. Gastroenterology 1994 Jun; 106(6): 1451–4

    PubMed  CAS  Google Scholar 

  206. Lieverse RJ, Jansen JB, Masclee AA, et al. Satiety effects of a physiological dose of cholecystokinin in humans. Gut 1995 Feb; 36(2): 176–9

    PubMed  CAS  Google Scholar 

  207. West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984 May; 246 (5 Pt 2): R776–87

    PubMed  CAS  Google Scholar 

  208. Crawley JN, Beinfeld MC. Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 1983 Apr 21; 302(5910): 703–6

    PubMed  CAS  Google Scholar 

  209. GlaxoSmithKline. Reports and publications [online]. Available from URL: http://www.gsk.com/reportsandpublications.htm [Accessed 2006 Dec 31]

  210. Matson CA, Reid DF, Cannon TA, et al. Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 2000 Apr; 278(4): R882–90

    PubMed  CAS  Google Scholar 

  211. Matson CA, Reid DF, Ritter RC. Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion. Am J Physiol Regul Integr Comp Physiol 2002 May; 282(5): R1368–73

    PubMed  CAS  Google Scholar 

  212. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nature 1999 Dec 9; 402(6762): 656–60

    PubMed  CAS  Google Scholar 

  213. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000 Nov; 141(11): 4255–61

    PubMed  CAS  Google Scholar 

  214. Tschöp M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest 2001 Jun; 24(6): RC19–21

    PubMed  Google Scholar 

  215. Cummings DE, Purneil JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001 Aug; 50(8): 1714–9

    PubMed  CAS  Google Scholar 

  216. Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab 2004 Aug; 287(2): E297–304

    PubMed  CAS  Google Scholar 

  217. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000 Oct 19; 407(6806): 908–13

    PubMed  Google Scholar 

  218. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000 Nov; 141(11): 4325–8

    PubMed  CAS  Google Scholar 

  219. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001 Jan 11; 409(6817): 194–8

    PubMed  CAS  Google Scholar 

  220. Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes 2001 Nov; 50(11): 2540–7

    PubMed  CAS  Google Scholar 

  221. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001 Dec; 86(12): 5992–5

    PubMed  CAS  Google Scholar 

  222. Druce MR, Wren AM, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes 2005 Sep; 29(9): 1130–6

    CAS  Google Scholar 

  223. Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding. Gastroenterology 2002 Oct; 123(4): 1120–8

    PubMed  CAS  Google Scholar 

  224. le Roux CW, Neary NM, Halsey TJ, et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 2005 Aug; 90(8): 4521–4

    PubMed  Google Scholar 

  225. Arnold M, Mura A, Langhans W, et al. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 2006 Oct 25; 26(43): 11052–60

    PubMed  CAS  Google Scholar 

  226. Tschöp M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001 Apr; 50(4): 707–9

    PubMed  Google Scholar 

  227. English PJ, Ghatei MA, Malik IA, et al. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 2002 Jun; 87(6): 2984–7

    PubMed  CAS  Google Scholar 

  228. Nedvidkova J, Krykorkova I, Bartak V, et al. Loss of mealinduced decrease in plasma ghrelin levels in patients with anorexia nervosa. J Clin Endocrinol Metab 2003 Apr; 88(4): 1678–82

    PubMed  CAS  Google Scholar 

  229. DelParigi A, Tschop M, Heiman ML, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 2002 Dec; 87(12): 5461–4

    PubMed  CAS  Google Scholar 

  230. Haqq AM, Farooqi IS, O'Rahilly S, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab 2003 Jan; 88(1): 174–8

    PubMed  CAS  Google Scholar 

  231. Holst B, Cygankiewicz A, Jensen TH, et al. High constitutive signaling of the ghrelin receptor: identification of a potent inverse agonist. Mol Endocrinol 2003 Nov; 17(11): 2201–10

    PubMed  CAS  Google Scholar 

  232. Asakawa A, Inui A, Kaga T, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 2003 Jul; 52(7): 947–52

    PubMed  CAS  Google Scholar 

  233. Beck B, Richy S, Stricker-Krongrad A. Feeding responses to ghrelin agonist and antagonist in lean and obese Zucker rats. Life Sci 2004 Dec 10; 76(4): 473–8

    PubMed  CAS  Google Scholar 

  234. Æterna Zentaris Inc. Corporate profile [online]. Available from URL: http://www.aeternazentaris.com/en/page.php[Accessed 2007 Jan 12]

  235. Halem HA, Taylor JE, Dong JZ, et al. Novel analogs of ghrelin: physiological and clinical implications. Eur J Endocrinol 2004 Aug; 151 Suppl. 1: S71–5

    PubMed  CAS  Google Scholar 

  236. Halem HA, Taylor JE, Dong JZ, et al. A novel growth hormone secretagogue-1a receptor antagonist that blocks ghrelin-induced growth hormone secretion but induces increased body weight gain. Neuroendocrinology 2005; 81(5): 339–49

    PubMed  CAS  Google Scholar 

  237. Helmling S, Maasch C, Eulberg D, et al. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci U S A 2004 Sep 7; 101(36): 13174–9

    PubMed  CAS  Google Scholar 

  238. Kobelt P, Helmling S, Stengel A, et al. Anti-ghrelin Spiegeimer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats. Gut 2006 Jun; 55(6): 788–92

    PubMed  CAS  Google Scholar 

  239. Shearman LP, Wang SP, Helmling S, et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in dietinduced obese mice. Endocrinology 2006 Mar; 147(3): 1517–26

    PubMed  CAS  Google Scholar 

  240. Zorrilla EP, Iwasaki S, Moss JA, et al. Vaccination against weight gain. Proc Natl Acad Sci U S A 2006 Aug 29; 103(35): 13226–31

    PubMed  CAS  Google Scholar 

  241. Vizcarra JA, Kirby JD, Kim SK, et al. Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs. Dornest Anim Endocrinol 2007 Aug; 33(2): 176–89

    CAS  Google Scholar 

  242. Cytos Biotechnology. Phase I/IIa clinical trial with obese individuals shows no effect of CYT009-GhrQb on weight loss [online]. Available from URL: http://www.cytos.com/doc/Cytos_Press_E_061107.pdf[Accessed 2007 Jan 12]

  243. Nørrelund H, Hansen TK, Ørskov H, et al. Ghrelin immunoreactivity in human plasma is suppressed by somatostatin. Clin Endocrinol 2002 Oct; 57(4): 539–46

    Google Scholar 

  244. Broglio F, van Koetsveld P, Benso A, et al. Ghrelin secretion is inhibited by either somatostatin or cortistatin in humans. J Clin Endocrinol Metab 2002 Oct; 87(10): 4829–32

    PubMed  CAS  Google Scholar 

  245. Tan TM, Vanderpump M, Khoo B, et al. Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome. J Clin Endocrinol Metab 2004 Aug; 89(8): 4162–5

    PubMed  CAS  Google Scholar 

  246. ClinicalTrials.gov. Prader-Willi syndrome and appetite [online]. Available from URL: http://www.clinicaltrials.gov/ct/show/NCT00175305[Accessed 2007 Jan 12]

  247. Chen D, Liao J, Li N, et al. A nonpeptidic agonist of glucagonlike peptide 1 receptors with efficacy in diabetic db/db mice. Proc Natl Acad Sci U S A 2007 Jan 16; 104(3): 943–8

    PubMed  CAS  Google Scholar 

  248. Knudsen LB, Kiel D, Teng M, et al. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A 2007 Jan 16; 104(3): 937–42

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Field is the recipient of a Medical Research Council Clinical Research Training Fellowship. Dr Wren is the recipient of a National Health Service Clinician Scientist Award. Dr Cooke is an employee of, and Dr Bloom is Chief Scientific Officer of, Thiakis Limited (UK), a spin-out company that is developing oxyntomodulin and peptide YY as therapeutics in the treatment of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, B.C.T., Wren, A.M., Cooke, D. et al. Gut Hormones as Potential New Targets for Appetite Regulation and the Treatment of Obesity. Drugs 68, 147–163 (2008). https://doi.org/10.2165/00003495-200868020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200868020-00002

Keywords

Navigation