Skip to main content
Log in

Valganciclovir in Adult Solid Organ Transplant Recipients

Pharmacokinetic and Pharmacodynamic Characteristics and Clinical Interpretation of Plasma Concentration Measurements

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients’ morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring.

Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66±10% (mean ± SD), a maximum plasma concentration of 3.1 ± 0.8 mg/L after a dose of 450 mg and of 6.6 ± 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0±1.0 hours, area under the plasma concentration-time curve values of 29.1±5.3mg · h/L and 51.9±18.3mg · h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 ± 3.8 L/h, an elimination half-life of 5.3 ± 1.5 hours and an apparent terminal volume of distribution of 101 ±36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption.

The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC50) among CMV clinical strains of 0.7 mg/L (range 0.2–1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated.

The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III

Similar content being viewed by others

References

  1. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med 2007; 357: 2601–14

    Article  PubMed  CAS  Google Scholar 

  2. Lowance D, Neumayer H-H, Legendre CM, et al., for the International Valacyclovir Cytomegalovirus Prophylaxis Transplantation Study Group. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. N Engl J Med 1999; 340: 1462–9

    Article  PubMed  CAS  Google Scholar 

  3. Preiksaitis JK, Brennan DC, Fishman J, et al. Canadian Society of Transplantation consensus workshop on cytomegalovirus management in solid organ transplant: final report. Am J Transplant 2005; 5: 218–27

    Article  PubMed  Google Scholar 

  4. Hodson E, Craig J, Strippoli G, et al. Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst Rev 2008; (16): CD003774

    Google Scholar 

  5. Paya C, Humar A, Dominguez E, et al. Efficacy and safety of valganciclovir vs oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 2004; 4: 611–20

    Article  PubMed  CAS  Google Scholar 

  6. Sugawara M, Huang W, Fei YJ, et al. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci 2000; 89: 781–9

    Article  PubMed  CAS  Google Scholar 

  7. Insook K, Xian-Yan C, Seonyoung K, et al. Identification of a human valacyclovirase. J Biochem 2003; 278: 25348–56

    Google Scholar 

  8. Lai L, Xu Z, Zhou J, et al. Molecular basis of prodrug activation by human valacyclovirase, an α-amino acid ester hydrolase. J Biol Chem 2008; 283: 9318–27

    Article  PubMed  CAS  Google Scholar 

  9. Scott JC, Partovi N, Ensom MHH. Ganciclovir in solid organ transplant recipients: is there a role for clinical pharmacokinetic monitoring?. Ther Drug Monit 2004; 26: 68–77

    Article  PubMed  CAS  Google Scholar 

  10. Pescovitz MD, Rabkin J, Merion RM, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother 2000; 44: 2811–5

    Article  PubMed  CAS  Google Scholar 

  11. Chamberlain CE, Penzak SR, Alfaro RM, et al. Pharmacokinetics of low and maintenance dose of valganciclovir in kidney transplant recipients. Am J Transplant 2008; 8: 1297–302

    Article  PubMed  CAS  Google Scholar 

  12. Pescovitz MD, Jain A, Robson A, et al. Establishing pharmacokinetics bioequivalence of valganciclovir oral solution versus the tablet formulation. Transplant Proc 2007; 39: 3111–6

    Article  PubMed  CAS  Google Scholar 

  13. Wiltshire H, Hirankarn S, Farrell C, et al., the Valganciclovir Solid Organ Transplant Study Group. Pharmacokinetic profile of ganciclovir after its oral administration and from its prodrug, valganciclovir, in solid organ transplant recipients. Clin Pharmacokinet 2005; 44: 495–507

    Article  PubMed  CAS  Google Scholar 

  14. Armendariz Y, Caldes A, Colom H, et al. Population pharmacokinetics of valganciclovir in solid organ transplant recipients infected by cytomegalovirus [abstract no. 1012]. 15th Meeting, Population Approach Group in Europe; 2006 Jun 14–16; Bruges [online]. Available from URL: http://www.page-meeting.org/default.asp?abstract=1012 [Accessed 2009 Jun 23]

    Google Scholar 

  15. Winston DJ, Baden LR, Gabriel DA, et al. Pharmacokinetics of ganciclovir after oral valganciclovir versus intravenous ganciclovir in allogeneic stem cell transplant patients with graft-versus-host disease of the gastrointestinal tract. Biol Blood Marrow Transplantation 2006; 12: 635–40

    Article  CAS  Google Scholar 

  16. Einsele H, Reusser P, Bornhauser M, et al. Oral valganciclovir leads to higher exposure to ganciclovir than intravenous ganciclovir in patients following allogeneic stem cell transplantation. Blood 2006; 107: 3002–8

    Article  PubMed  CAS  Google Scholar 

  17. Jung D, Dorr A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J Clin Pharmacol 1999; 39: 800–4

    Article  PubMed  CAS  Google Scholar 

  18. Brown F, Banken L, Saywell K, et al. Pharmacokinetics of valganciclovir and ganciclovir following multiple oral dosages of valganciclovir in HIV- and CMV-seropositive volunteers. Clin Pharmacokinet 1999; 37: 167–76

    Article  PubMed  CAS  Google Scholar 

  19. Martin DF, Sierra-Madero J, Walmsley S, et al. A controlled trial of valganciclovir as induction therapy for cytomegalovirus retinitis. N Engl J Med 2002; 346: 1119–26

    Article  PubMed  CAS  Google Scholar 

  20. Czock D, Scholle C, Rasche FM, et al. Pharmacokinetics of valganciclovir and ganciclovir in renal impairment. Clin Pharmacol Ther 2002; 72: 142–50

    Article  PubMed  CAS  Google Scholar 

  21. Pescovitz MD, Pruett TL, Gonwa T, et al. Oral ganciclovir dosing in transplant recipients and dialysis patients based on renal function. Transplantation 1998; 66: 1104–7

    Article  PubMed  CAS  Google Scholar 

  22. Wolfe EJ, Mathur V, Tomlanovich S, et al. Pharmacokinetics of mycophenolate mofetil and intravenous ganciclovir alone and in combination in renal transplant recipients. Pharmacotherapy 1997; 17: 591–8

    PubMed  CAS  Google Scholar 

  23. Rondeau E, Farquet C, Fries D, et al. Treatment of cytomegalovirus infections with ganciclovir in kidney transplant recipients: clinical and pharmacokinetic study. Presse Med 1991; 20: 2030–2

    PubMed  CAS  Google Scholar 

  24. Tornatore KM, Garey KW, Saigal N, et al. Ganciclovir pharmacokinetics and cytokine dynamics in renal transplant recipients with cytomegalovirus infection. Clin Transplant 2001; 15: 297–308

    Article  PubMed  CAS  Google Scholar 

  25. Campos F, Pou L, Pascual C. Serum monitoring of ganciclovir [abstract]. Ther Drug Monit 1993; 15: 156

    Article  Google Scholar 

  26. Boeckh M, Zaia JA, Jung D, et al. A study of the pharmacokinetics, antiviral activity, and tolerability of oral ganciclovir for CMV prophylaxis in marrow transplantation. Biol Blood Marrow Transplantation 1998; 4: 13–9

    Article  CAS  Google Scholar 

  27. Shepp DH, Dandliker PS, de Miranda P, et al. Activity of 9-[2-hydroxy-1-(hydroxymethyl) ethoxymethyl]guanine in the treatment of cytomegalovirus pneumonia. Ann Intern Med 1985; 103: 368–73

    PubMed  CAS  Google Scholar 

  28. Fletcher C, Sawchuk R, Chinnock B, et al. Human pharmacokinetics of the antiviral drug DHPG. Clin Pharmacol Ther 1986; 40: 281–6

    Article  PubMed  CAS  Google Scholar 

  29. Anderson RD, Griffy KG, Jung D, et al. Ganciclovir absolute bioavailability and steady-state pharmacokinetics after oral administration of two 3000-mg/d dosing regimens in human immunodeficiency virus- and cytomegalo-virus-seropositive patients. Clin Ther 1995; 17: 425–32

    Article  PubMed  CAS  Google Scholar 

  30. Jung D, Griffy K, Wong R, et al. Absolute bioavailability and dose proportionality of oral ganciclovir after ascending multiple doses in human immunodeficiency virus (HIV)-positive patients. J Clin Pharmacol 1998; 38: 1122–8

    PubMed  CAS  Google Scholar 

  31. Lalezari JP, Friedberg DN, Bissett J, et al., Roche Cooperative Oral Ganciclovir Study Group. High dose oral ganciclovir treatment for cytomegalovirus retinitis. J Clin Virol 2002; 24: 67–77

    Article  PubMed  CAS  Google Scholar 

  32. Hochster H, Dieterich D, Bozzette S, et al. Toxicity of combined ganciclovir and zidovudine for cytomegalovirus disease associated with AIDS: an AIDS Clinical Trials Group study. Ann Intern Med 1990; 113: 111–7

    PubMed  CAS  Google Scholar 

  33. Piketty C, Bardin C, Gilquin J, et al. Low plasma concentrations achieved with conventional schedules of administration of ganciclovir in patients with AIDS. J Infect Dis 1996; 174: 188–90

    Article  PubMed  CAS  Google Scholar 

  34. Laskin OL, Stahl-Bayliss CM, Kalman CM, et al. Use of ganciclovir to treat serious cytomegalovirus infections in patients with AIDS. J Infect Dis 1987; 155: 323–7

    Article  PubMed  CAS  Google Scholar 

  35. Laskin OL, Cederberg DM, Mills J, et al. Ganciclovir for the treatment and suppression of serious infections caused by cytomegalovirus. Am J Med 1987; 83: 201–7

    Article  PubMed  CAS  Google Scholar 

  36. Aweeka FT, Gambertoglio JG, Kramer F, et al. Foscarnet and ganciclovir pharmacokinetics during concomitant or alternating maintenance therapy for AIDS-related cytomegalovirus retinitis. Clin Pharmacol Ther 1995; 57: 403–12

    Article  PubMed  CAS  Google Scholar 

  37. Jacobson MA, de Miranda P, Cederberg DM, et al. Human pharmacokinetics and tolerance of oral ganciclovir. Antimicrob Agents Chemother 1987; 31: 1251–4

    Article  PubMed  CAS  Google Scholar 

  38. Winston DJ, Ho WG, Bartoni K, et al. Ganciclovir therapy for cytomegalovirus infections in recipients of bone marrow transplants and other immunosuppressed patients. Rev Infect Dis 1988; 10 Suppl. 3: 547–53

    Article  Google Scholar 

  39. Erice A, Jordan MC, Chace BA, et al. Ganciclovir treatment of cytomegalovirus disease in transplant recipients and others immunocompromised hosts. JAMA 1987; 22: 3082–7

    Article  Google Scholar 

  40. Weller S, Liao SHT, Cederberg DM, et al. The pharmacokinetics of ganciclovir in patients with cytomegalovirus (CMV) infections [abstract]. J Pharm Sci 1987; 76 Suppl.: 120S

    Google Scholar 

  41. Asano-Mori Y, Kanda Y, Oshima K, et al. Pharmacokinetics of ganciclovir in haematopoietic stem cell transplantation recipients with or without renal impairment. J Antimicrob Chemother 2006; 57: 1004–7

    Article  PubMed  CAS  Google Scholar 

  42. Sommadossi JP, Bevan R, Ling T, et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis 1988; 10 Suppl. 3: 507–14

    Article  Google Scholar 

  43. Bastien O, Boulieu R, Bleyzac N, et al. Ganciclovir use during mild renal failure in heart transplantation. Transplant Proc 1996; 28: 2876–7

    PubMed  CAS  Google Scholar 

  44. McGavin JK, Goa KL. Ganciclovir: an update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs 2001; 61: 1153–83

    Article  PubMed  CAS  Google Scholar 

  45. Perrottet N, Robatel C, Melyan P, et al. Disposition of valganciclovir during continuous renal replacement therapy in two lung transplant recipients. J Antimicrob Chemother 2008; 61: 1332–5

    Article  PubMed  CAS  Google Scholar 

  46. Yuen GJ, Drusano GL, Fletcher C, et al. Population differences in ganciclovir clearance as determined by nonlinear mixed-effects modelling. J Antimicrob Chemother 1995; 39: 2350–2

    Article  CAS  Google Scholar 

  47. Preston SL, Drusano GL. Nonparametric expectation maximization population modeling of ganciclovir. J Clin Pharmacol 1996; 36: 301–10

    PubMed  CAS  Google Scholar 

  48. Cimoch PJ, Lavelle J, Pollard R, et al. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 227–34

    Article  PubMed  CAS  Google Scholar 

  49. Jung D, AbdelHameed MH, Hunter J, et al. The pharmacokinetics and safety profile of oral ganciclovir in combination with trimethoprim in HIV- and CMV-seropositive patients. Br J Clin Pharmacol 1999; 47: 255–9

    Article  PubMed  CAS  Google Scholar 

  50. Jung D, Griffy K, Dorr A, et al. Effect of high-dose oral ganciclovir on didanosine disposition in human immunodeficiency virus (HIV)-positive patients. J Clin Pharmacol 1998; 38: 1057–62

    Article  PubMed  CAS  Google Scholar 

  51. Jung D, AbdelHameed MH, Teitelbaum P, et al. The pharmacokinetics and safety profile of oral ganciclovir combined with zalcitabine or stavudine in asymptomatic HIV- and CMV-seropositive patients. J Clin Pharmacol 1999; 39: 505–12

    PubMed  CAS  Google Scholar 

  52. Cantarovich M, Latter D. Effect of prophylactic ganciclovir on renal function and cyclosporine levels after heart transplantation. Transpl Proceed 1994; 26: 2747–8

    CAS  Google Scholar 

  53. Mahony WB, Domin BA, Zimmerman TP. Ganciclovir permeation of human erythrocyte membrane. Pharmacology 1991; 41: 263–71

    CAS  Google Scholar 

  54. Li F, Maag H, Alfredson T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J Pharm Sci 2008; 97: 119–34

    Article  CAS  Google Scholar 

  55. Cvestković RS, Wellington K. Valganciclovir: a review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs 2005; 65: 859–78

    Article  Google Scholar 

  56. Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 1988; 10 Suppl. 3: S490–4

    Article  PubMed  CAS  Google Scholar 

  57. Smee DF, Martin J, Verheyden JPH, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1, 3-dihydroxy-2-propoxymethyl) guanine. Antimicrob Agents Chemother 1983; 23: 676–82

    Article  PubMed  CAS  Google Scholar 

  58. Tolman RL, Field AK, Karkas JD, et al. 2′-nor-cGMP: a seco-cyclic nucleotide with powerful anti-DNA-viral activity. Biochem Biophys Res Commun 1985; 128: 1329–35

    Google Scholar 

  59. Field AK, Davies ME, DeWitt C, et al. 9-[2-hydroxy-1-(hydroxymethyl)ethoxy]methylguanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci USA 1983; 80: 4139–43

    Google Scholar 

  60. Duke AE, Smee DF, Chernow M, et al. In vitro and in vivo activities of phosphate derivates of 9-(1,3-dihydroxy-2-propoxymethyl)-guanine against cytomegalovirus. Antiviral Res 1986; 6: 299–308

    Article  PubMed  CAS  Google Scholar 

  61. Biron KK, Stanat SC, Sorrell JB, et al. Metabolic activation of the nucleoside analog 9-[2-hydroxy-1-(hydroxymethyl)ethoxy]methylguanine in human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad Sci USA 1985; 82: 2473–7

    Article  PubMed  CAS  Google Scholar 

  62. Freitas VR, Smee DF, Chernow M, et al. Activity of 9-(1,3-dihydroxy-2-propoxymethyl)-guanine compared with that of acyclovir against human, monkey, and rodent cytomegalovirus. Antimicrob Agents Chemother 1985; 28: 240–5

    Article  PubMed  CAS  Google Scholar 

  63. Tocci Mj, Livelli TJ, Perry HC, et al. Effects of the nucleoside analog 2′-nor-2′-deoxyguanosine on the human cytomegalovirus replication. Antimicrob Agents Chemother 1984; 25: 247–52

    Article  PubMed  CAS  Google Scholar 

  64. Plotkin AS, Drew WL, Felsenstein D, et al. Sensitivity of clinical isolates of human cytomegalovirus to 9-(1,3-dihydroxy-2-propoxymethyl) guanine. J Infect Dis 41985; 152: 833–4

    Article  PubMed  CAS  Google Scholar 

  65. Felstein D, D’Amico DJ, Hirsch MS, et al. Treatment of cytomegalovoris retinitis with 9-[2-hydroxy-1-(hydroxymethyl)ethoxymethyl]guanine. Ann Intern Med 1985; 103: 377–80

    Google Scholar 

  66. Taylor DL, Jeffries DJ, Taylor-Robinson D, et al. The susceptibility of adenovirus infection to anticytomegalovirus drug, ganciclovir (DHPG). FEMS Microbiol Lett 1988; 49: 337–41

    Article  CAS  Google Scholar 

  67. Biron KK, Fyfe JA, Stanat SC, et al. A human cytomegalovirus mutant resistant to the nucleoside analog 9-[2-hydroxy-1-(hydroxymethyl)ethoxy]methyguanine (BW B759U) induces reduced level of BW B759U triphosphate. Proc Natl Acad Sci USA 1986; 83: 8769–73

    Article  PubMed  CAS  Google Scholar 

  68. Rush J, Mills J. Effect of combinations of dihydrofluoromethylornithine (DFMO) and 9[1,3-dihydroxy-2-propoxy) methyl]guanine (DHPG) on human cytomegalovirus. J Med Virol 1987; 21: 269–87

    Article  PubMed  CAS  Google Scholar 

  69. Shepp DH, Dandliker PS, de Miranda P, et al. Activity of 9-[2-hydroxy-1-(hydroxymethyl) ethoxymethyl]guanine in the treatment of cytomegalovirus pneumonia. Ann Intern Med 1985; 10: 368–73

    Google Scholar 

  70. Cole NL, Balfour Jr HH. In vitro susceptibility of cytomegalovirus isolates from immunocompromised patients to acyclovir and ganciclovir. Diag Microbiol Infect Dis 1987; 6: 255–61

    Article  CAS  Google Scholar 

  71. Drew WL, Miner R, Saleh E. Antiviral susceptibility testing of cytomegalo-virus criteria for detecting resistance to antivirals. Clin Diagn Virol 1993; 1: 179–85

    Article  PubMed  CAS  Google Scholar 

  72. Mar EC, Cheng YC, Huang ES, et al. Effect of 9-(1,3-dihydroxy-2-propoxymethyl)-guanine on human cytomegalovirus replication in vitro. Antimicrob Agents Chemother 1983; 24: 518–27

    Article  PubMed  CAS  Google Scholar 

  73. Cheng YC, Huan ES, Lin JC, et al. Unique spectrum of activity of 9-(1,3-dihydroxy-2-propoxymethyl)-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1. Proc Natl Acad Sci USA 1983; 80: 2767–70

    Article  PubMed  CAS  Google Scholar 

  74. McSharry JJ, McDonough A, Olson B, et al. Susceptibilites of human cytomegalovirus clinical isolates to BAY38-4766, BAY43-9695, and ganciclovir. Antimicrob Agents Chemother 2001; 45: 2925–7

    Article  PubMed  CAS  Google Scholar 

  75. Boivin G, Erice A, Crane DD, et al. Ganciclovir susceptibilities of cytomegalovirus (CMV) isolates from solid organ transplant recipients with CMV viremia after antiviral prophylaxis. J Infect Dis 1993; 168: 332–5

    Article  PubMed  CAS  Google Scholar 

  76. Slavin MA, Bindra RR, Gleaves CA, et al. Ganciclovir sensitivity of cytomegalovirus at diagnosis and during treatment of cytomegalovirus pneumonia in marrow transplant recipients. Antimicrob Agents Chemother 1993; 37: 1360–3

    Article  PubMed  CAS  Google Scholar 

  77. Fishman JA, Doran MT, Volpicelli SA, et al. Dosing of intravenous ganciclovir for the prophylaxis and treatment of cytomegalovirus infection in solid organ transplant recipients. Transplantation 2000; 69: 389–94

    Article  PubMed  CAS  Google Scholar 

  78. Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 1988; 8 (3Suppl.): 490–4S

    Article  Google Scholar 

  79. Boivin G, Goyette N, Gilbert C, et al. Absence of cytomegalovirus-resistance mutations after valganciclovir prophylaxis, in a prospective multicenter study of solid-organ transplant recipients. J Infect Dis 2007; 189: 1615–8

    Article  Google Scholar 

  80. Boivin G, Goyette N, Gilbert C, et al. Analysis of cytomegalovirus DNA polymerase (UL54) mutations in solid organ transplant patients receiving valganciclovir or ganciclovir prophylaxis. J Med Virol 2005; 77: 425–9

    Article  PubMed  CAS  Google Scholar 

  81. Wiltshire H, Paya C, Pescovitz M, et al., the Valganciclovir Solid Organ Transplant Study Group. Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation 2005; 79: 1477–83

    Article  PubMed  CAS  Google Scholar 

  82. Gruber SA, Garnick J, Morawski K, et al. Cytomegalovirus prophylaxis with valganciclovir in African-American renal allograft recipients based on donor/recipient serostatus. Clin Transplant 2005; 19: 273–8

    Article  PubMed  Google Scholar 

  83. Spector SA, Busch DF, Follansbee S, et al. Pharmacokinetic, safety, and antiviral profiles of oral ganciclovir in persons infected with human immunodeficiency virus: a phase I/II study. AIDS Clinical Trials Group and Cytomegalovirus Cooperative Study Group. J Infect Dis 1995; 171: 1431–7

    Article  PubMed  CAS  Google Scholar 

  84. Pescovitz MD, Brook B, Jindal RM, et al. Oral ganciclovir in pediatric transplant recipients: a pharmacokinetic study. Clinical Transplant 1997; 11: 613–7

    CAS  Google Scholar 

  85. Filler G, Lampe D, von Bredow MA, et al. Prophylactic oral ganciclovir after renal transplantation-dosing and pharmacokinetics. Pediatr Nephrol 1998; 12: 6–9

    Article  PubMed  CAS  Google Scholar 

  86. Piketty C, Bardin C, Gilquin J, et al. Monitoring plasma levels of ganciclovir in AIDS patients receiving oral ganciclovir as maintenance therapy for CMV retinitis. Clin Microbiol Infect 2000; 6: 117–20

    Article  PubMed  CAS  Google Scholar 

  87. Zhang D, Lapeyraque AL, Popon M, et al. Pharmacokinetics of ganciclovir in pediatric renal transplant recipients. Pediatr Nephrol 2003; 18: 943–8

    Article  PubMed  Google Scholar 

  88. Kimberlin DW, Acosta EP, Sanchez PJ, et al. Pharmacokinetics and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J Infect Dis 2008; 197: 836–45

    Article  PubMed  CAS  Google Scholar 

  89. Sommadossi JP, Carlisle R. Toxicity of 3′-azido-3′-deoxythymidine and 9-(1,3-dihydroxy-2-propoxymethyl) guanine for normal human hematopoietic progenitor cells in vitro. Antimicrob Agents Chemother 1987; 31: 452–4

    Article  PubMed  CAS  Google Scholar 

  90. Chamberlain SD, Biron KK, Dornsife RE, et al. An enantiospecific synthesis of the human cytomegalovirus antiviral agent [(R)-3-((2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methoxy)-4-hydoxybutyl]phosphoric acid. J Med Chem 1994; 37: 1371–7

    Article  PubMed  CAS  Google Scholar 

  91. Kanda Y, Mineishi S, Saito T, et al. Pre-emptive therapy against cytomegalovirus (CMV) disease guided by CMV antigenemia assay after allogenic hematopoietic stem cell transplantation: a single-center experience in Japan. Bone Marrow Transplant 2001; 27: 437–44

    Article  PubMed  CAS  Google Scholar 

  92. Salzberg B, Bowden RA, Hackman RC, et al. Neutrpenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood 1997; 90: 2502–8

    Google Scholar 

  93. Buhles Jr W, Mastre BJ, Tinker AJ, et al. Ganciclovir treatment of life- or sight-threatening cytomegalovirus infections: experience in 314 immunocompromised patients. Rev Infect Dis 1988; 10 Suppl. 3: 495–503

    Article  Google Scholar 

  94. Manuel O, Venetz JP, Fellay J, et al. Efficacy and safety of universal valganciclovir prophylaxis combined with a tacrolimus/mycophenolate-based regimen in kidney transplantation. Swiss Med Wkly 2007; 137: 669–76

    PubMed  CAS  Google Scholar 

  95. Combarnous F, Fouque D, Chossegros P, et al. Neurologic side-effects of ganciclovir. Clin Nephrol 1994; 42: 279–80

    PubMed  CAS  Google Scholar 

  96. Peyrière H, Jeziorrsky E, Jalabert A, et al. Neurotoxicity related to valganciclovir in a child with impaired renal function: usefulness of therapeutic drug monitoring. Ann Pharmacother 2006; 40: 143–6

    PubMed  Google Scholar 

  97. Chen JL, Brocavich JM, Lin AYF. Psychiatric disturbances associated with ganciclovir therapy. Ann Pharmacother 1992; 26: 193–5

    PubMed  CAS  Google Scholar 

  98. Hansen BA, Greenberg KS, Richter JA. Ganciclovir-induced psychosis. N Engl J Med 1996; 31: 1397

    Article  Google Scholar 

  99. Barton TL, Roush MK, Dever LL. Seizures associated with ganciclovir therapy. Pharmacotherapy 1992; 12: 413–5

    PubMed  CAS  Google Scholar 

  100. Sharthkumar A, Shaw PJ. Ganciclovir-induced encephalopathy in a bone marrow transplant recipient. Bone Marrow Transplant 1999; 24: 421–3

    Article  Google Scholar 

  101. Davis CL, Springmeyer S, Gmerek BJ, et al. Central nervous system side effects of ganciclovir. N Engl J Med 1990; 29: 933–4

    Google Scholar 

  102. Figge HL, Baille GR, Briceland LL, et al. Possible ganciclovir-induced hepatotoxicity in patients with AIDS. Clin Pharm 1992; 11: 432–4

    PubMed  CAS  Google Scholar 

  103. Shea BF, Hoffman S, Sesin GP, et al. Ganciclovir hepatotoxicity. Pharmacotherapy 1987; 7: 223–6

    PubMed  CAS  Google Scholar 

  104. Ensom MHH, Davis GA, Cropp CD, et al. Clinical pharmacokinetics in the 21st century. Clin Pharmacokinet 1998; 34: 265–79

    Article  PubMed  CAS  Google Scholar 

  105. Singh N, Wannstedt C, Keyes L, et al. Efficacy of valganciclovir administered as preemptive therapy for cytomegalovirus disease in liver transplant recipients: impact on viral load and late-onset cytomegalovirus. Transplantation 2005; 79: 85–90

    Article  PubMed  CAS  Google Scholar 

  106. Singh N, Wannstedt C, Keyes L, et al. Valganciclovir as preemptive therapy for cytomegalovirus in cytomegalovirus-seronegative liver transplant recipients of cytomegalovirus-seropositive donor allografts. Liver Transpl 2008; 14: 240–4

    Article  PubMed  Google Scholar 

  107. Babel N, Gabdrakhmanovy L, Juergensen JS, et al. Treatment of cytomegalovirus disease with valganciclovir in renal transplant recipients: a single center experience. Transplantation 2004; 78: 283–5

    Article  PubMed  CAS  Google Scholar 

  108. Lopau K, Greser A, Wanner C. Efficacy and safety of preemptive anti-CMV therapy with valganciclovir after kidney transplantation. Clin Transplant 2007; 21: 80–5

    Article  PubMed  Google Scholar 

  109. Devyatko E, Zuckermann A, Ruzicka M, et al. Pre-emptive treatment with oral valganciclovir in management of CMV infection after cardiac transplantation. J Heart Lung Transplant 2004; 23: 1277–82

    Article  PubMed  Google Scholar 

  110. Aigher C, Jaksch P, Winkler G, et al. Initial experience with oral valganciclovir for pre-emptive cytomegalovirus therapy after lung transplantation. Wien Klin Wochenschr 2005; 117: 480–4

    Article  CAS  Google Scholar 

  111. Fellay J, Venetz JP, Aubert D, et al. Treatment of cytomegalovirus infection or disease in solid organ transplant recipients with valganciclovir. Am J Transplant 2005; 5: 1781–2

    Article  PubMed  Google Scholar 

  112. Díaz-Pedroche C, Lumbreras C, San Juan R, et al. Valganciclovir preemptive therapy for the prevention of cytomegalovirus disease in high-risk seropositive solid-organ transplant recipients. Transplantation 2006; 82: 30–5

    Article  PubMed  CAS  Google Scholar 

  113. Len O, Gavaldà J, Aguado JM, et al. Valganciclovir as treatment for cytomegalovirus disease in solid organ transplant recipients. Clin Infect Dis 2008; 46: 20–7

    Article  PubMed  CAS  Google Scholar 

  114. Humar A, Siegal D, Moussa G, et al. A prospective assessment of valganciclovir for the treatment of cytomegalovirus infection and disease in transplant recipients. J Infect Dis 2005; 192: 1154–7

    Article  PubMed  CAS  Google Scholar 

  115. Åsberg A, Humar A, Rollag H, et al., on behalf of the VICTOR Study Group. Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients. Am J Transplant 2007; 7: 2106–3

    Article  PubMed  CAS  Google Scholar 

  116. Perrottet N, Beguin A, Meylan P, et al. Determination of aciclovir and ganciclovir in human plasma by liquid chromatography: spectrofluorimetric detection and stability studies in blood samples. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 852: 420–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was partly provided by internal funds and partly by an unrestricted research grant from Roche (Basel, Switzerland) for studies related to transplantation. The funding source had no role in the analysis and reporting of data, nor in the decision to submit the manuscript for publication. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Buclin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrottet, N., Decosterd, L.A., Meylan, P. et al. Valganciclovir in Adult Solid Organ Transplant Recipients. Clin Pharmacokinet 48, 399–418 (2009). https://doi.org/10.2165/00003088-200948060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200948060-00006

Keywords

Navigation