Skip to main content
Log in

Cholestasis and Endogenous Opioids

Liver Disease and Exogenous Opioid Pharmacokinetics

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

A class of endogenous Opioids is upregulated in liver disease particular to cholestasis, which contributes to symptoms in liver disease such as pruritus, hypotension and encephalopathy. Symptoms associated with cholestasis are reversed or at least ameliorated by μ opioid receptor antagonists. Palliation of symptoms related to cholestatic liver disease also involves bile acid binding agents. Opioid receptor antagonists, unlike bile acid binding agents, have been reported to relieve multiple symptoms, except for pruritus, and improve liver function as demonstrated in experimental cholestasis. Exogenous opioid pharmacology is altered by liver disease. Dose reduction or prolongation of dose intervals is necessary depending on the severity of liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Fig. 2
Table IV

Similar content being viewed by others

References

  1. Mani A, Rasool R, Montagnese S, et al. Endogenous Opioids and liver disease. Scan J Gastroenterol 2006; 41: 1–11

    CAS  Google Scholar 

  2. Bergasa NV, Rothman RB, Mukerjee E, et al. Up-regulation of central mu-opioid receptors in a model of hepatic encephalopathy: a potential mechanism for increased sensitivity to morphine in liver failure. Life Sci 2002; 70: 1701–8

    PubMed  CAS  Google Scholar 

  3. Bergasa NV, Liau S, Homel P, et al. Hepatic Met-enkephalin immunoreactivity is enhanced in primary biliary cirrhosis. Liver 2002; 22: 107–13

    PubMed  CAS  Google Scholar 

  4. Bergasa N, Sabol SL, Young WS, et al. Cholestasis is associated with preproenkephalin mRNA expression in the adult rat liver. Am J Physiol 1995; 268 (2 Pt 1): G346–54

    PubMed  CAS  Google Scholar 

  5. Nicoll J, Axiotis CA, Bergasa NV. The delta Opioid receptor 1 is expressed by proliferating bile ductules in rats with cholestasis: implications for the study of liver regeneration and malignant transformation of biliary epithelium. Med Hypotheses 2005; 65: 1099–105

    PubMed  CAS  Google Scholar 

  6. Thornton J, Losowsky MS. Plasma beta endorphin in cirrhosis and renal failure. Gut 1991; 32(3): 306–8

    PubMed  CAS  Google Scholar 

  7. Swain M, Rothman RB, Xu H, et al. Endogenous Opioids accumulate in plasma in a rat model of acute cholestasis. Gastroenterology 1992; 103(2): 630–5

    PubMed  CAS  Google Scholar 

  8. Thornton J, Dean H, Losowsky MS. Is ascites caused by impaired hepatic inactivation of blood borne endogenous Opioid Peptides? Gut 1988; 29(9): 1167–72

    PubMed  CAS  Google Scholar 

  9. Thornton J, Losowsky MS. Methionine enkephalin is increased in plasma in acute liver disease and is present in bile and urine. J Hepatol 1989; 81(1): 53–9

    Google Scholar 

  10. Thornton J, Losowsky MS. Opioid peptides and primary biliary cirrhosis. BMJ 1988; 297: 1501–4

    PubMed  CAS  Google Scholar 

  11. Ozsoylu S, Kocak N. Naloxone in hepatic encephalopathy. Am J Dis Child 1985; 139(8): 749–50

    PubMed  CAS  Google Scholar 

  12. Bergasa N. Medical palliation of the jaundiced patient with pruritus. Gastroenterol Clin North Am 2006; 35: 113–23

    PubMed  Google Scholar 

  13. Hajrasouliha AR, Tavakoli S, Jabehdar-Maralani P, et al. Cholestatic liver disease modulates susceptibility to ischemia/ reperfusion induced arrhythmia, but not necrosis and hemodynamic instability: the role of endogenous Opioid peptides. J Hepatol 2005; 43: 491–8

    PubMed  CAS  Google Scholar 

  14. Hajrasouliha AR, Tavakoli S, Jabehdar-Maralani P, et al. Resistance of cholestatic rats against epinephrine induced arrhythmia: the role of nitric oxide and endogenous Opioids. Eur J Pharmacol 2004; 499(3): 307–13

    PubMed  CAS  Google Scholar 

  15. Yurdaydin C, Karavelioglu D, Onaran O, et al. Opioid receptor ligands in human hepatic encephalopathy. J Hepatol 1998; 29(5): 796–801

    PubMed  CAS  Google Scholar 

  16. Demehri S, Namiranian K, Mehr SE, et al. Alpha-2 adrenoceptor hyporesponsiveness in isolated tissues of cholestatic animals: involvement of Opioid and nitric oxide systems. Life Sci 2003; 73(2): 209–20

    PubMed  CAS  Google Scholar 

  17. Leehey D, Gollapudi P, Deakin A. Naloxone increases water and electrolyte excretion after water loading in patients with cirrhosis and ascites. J Lab Clin Med 1991; 118(5): 484–91

    PubMed  CAS  Google Scholar 

  18. Bergasa N, Rothman RB, Vergalla J, et al. Central mu-opioid receptors are down regulated in a rat model of cholestasis. J Hepatol 1992; 15: 220–4

    PubMed  CAS  Google Scholar 

  19. Bergasa N, Alling DW, Talbot T, et al. Effects of naloxone infusions in patients with the pruritus of cholestasis: a doubleblind, randomized, controlled trial. Ann Intern Med 1995; 123(3): 161–7

    PubMed  CAS  Google Scholar 

  20. Bergasa N, Schmitt JM, Talbot TL, et al. Open label trial of oral nalmefene therapy for the pruritus of cholestasis. Hepatology 1998; 27(3): 679–84

    PubMed  CAS  Google Scholar 

  21. Bergasa NV, Alling DW, Talbot TL, et al. Oral nalmefene therapy reduces scratching activity due to the pruritus of cholestasis: a controlled study. J Am Acad Dermatol 1999; 41: 431–4

    PubMed  CAS  Google Scholar 

  22. Wolfhagen F, Sternieri E, Hop WC, et al. Oral naltrexone treatment for cholestatic pruritus: a double blind placebo controlled study. Gastroenterology 1997; 113: 1264–9

    PubMed  CAS  Google Scholar 

  23. Terg R, Coronel F, Sorda J, et al. Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo controlled study. J Hepatol 2002; 37(6): 863–5

    Google Scholar 

  24. Jones E, Dekker LR. Florid Opioid withdrawal like reaction precipitated by naltrexone in a patient with chronic cholestasis. Gastroenterology 2000; 118(2): 431–2

    PubMed  CAS  Google Scholar 

  25. Jones EA, Neuberger J, Bergasa NV. Opiate antagonist therapy for the pruritus of cholestasis: the avoidance of Opioid withdrawal like reactions. QJM 2002; 95(8): 547–52

    PubMed  CAS  Google Scholar 

  26. Ghaffari K, Safadkuhi ST, Honar H, et al. Obstructive cholestasis alters intestinal transit in mice: role of Opioid system. Life Sci 2004; 76: 397–406

    PubMed  CAS  Google Scholar 

  27. Ebrahimkhani M, Kiani S, Oakley F, et al. Naltrexone, an Opioid receptor antagonist, attenuates liver fibrosis in bile duct ligated rats. Gut 2006; 55(11): 1606–16

    PubMed  CAS  Google Scholar 

  28. Ghent C, Bloomer JR. Itch in liver disease: facts and speculations. Yale J Biol Med 1979; 52(1): 77–82

    PubMed  CAS  Google Scholar 

  29. Andersen E. The effect of cholestyramine on bile acid kinetics in healthy controls. Scand J Gastroenterol 1979; 14(6): 657–62

    PubMed  CAS  Google Scholar 

  30. Bergasa N. Pruritus and fatigue in primary biliary cirrhosis. Clin Liver Dis 2003; 7(4): 879–900

    PubMed  Google Scholar 

  31. Bernstein J, Swift R. Relief of intractable pruritus with naloxone. Arch Derm 1979; 115(11): 1366–7

    PubMed  CAS  Google Scholar 

  32. Mela M, Mancuso A, Burroughs AK. Review article: pruritus in cholestatic and other liver diseases. Aliment Pharmacol Ther 2003; 17(7): 857–70

    PubMed  CAS  Google Scholar 

  33. Malspeis L, Bathala MS, Ludden TM, et al. Metabolic reduction of naltrexone. 1. Synthesis, separation and characterization of naloxone and naltrexone reduction products and qualitative assay of urine and bile following administration of naltrexone, alpha-naltrexol, or beta naltrexol. Res Commun Chem Pathol Pharmacol 1975; 12: 43–65

    PubMed  CAS  Google Scholar 

  34. Verebey K. The clinical pharmacology of naltrexone: pharmacology and pharmacodynamics. NIDA Res Monogr 1981; 28: 147–58

    PubMed  CAS  Google Scholar 

  35. Porter SJ, Somogyi AA, White JM. In vivo and in vitro potency studies of 6beta-naltrexol, the major human metabolite of naltrexone. Addict Biol 2002; 7(2): 219–25

    PubMed  CAS  Google Scholar 

  36. Raehal KM, Lowery JJ, Bhamidipati CM, et al. In vivo characterization of 6beta-naltrexol, an Opioid ligand with less inverse agonist activity compared with naltrexone and naloxone in opioid-dependent mice. J Pharmacol Exp Ther 2005; 313(3): 1150–62

    PubMed  CAS  Google Scholar 

  37. Ko M, Divin MF, Lee H, et al. Differential in vivo potencies of naltrexone and 6beta-naltrexol in the monkey. J Pharm Exper Ther 2006; 316(2): 772–9

    CAS  Google Scholar 

  38. Kogan M, Verebey K, Mule SJ. Estimation of the systemic availability and other pharmacokinetic parameters of naltrexone in man after acute and chronic oral administration. Res Commun Chem Pathol Pharmacol 1977; 18: 29–34

    PubMed  CAS  Google Scholar 

  39. Wall M, Brine DR, Perez-Reyes M. Metabolism and disposition of naltrexone in man after oral and intravenous administration. Drug Metab Dispos 1981; 9(4): 369–75

    PubMed  CAS  Google Scholar 

  40. Bertolotti M, Ferrari A, Vitale G, et al. Effect of liver cirrhosis on the systemic availability of naltrexone in humans. J Hepatol 1997; 27: 505–11

    PubMed  CAS  Google Scholar 

  41. Olsen L, Christophersen AS, Frogopsahl G, et al. Plasma concentrations during naltrexone implant treatment of opiate dependent patients. Br J Clin Pharmacol 2004; 58(2): 219–22

    PubMed  CAS  Google Scholar 

  42. Lee M, Wagner HN, Tanada S, et al. Duration of occupancy of opiate receptors by naltrexone. J Nucl Med 1988; 29(7): 1207–11

    PubMed  CAS  Google Scholar 

  43. Verebey K, Volavka J, Mulé SJ, et al. Naltrexone: disposition, metabolism, and effects after acute and chronic dosing. Clin Pharmacol Ther 1976; 20(3): 315–28

    PubMed  CAS  Google Scholar 

  44. Ferrari A, Bertolotti M, Dell’Utri A, et al. Serum time course of naltrexone and 6 beta-naltrexol levels during long-term treatment in drug addicts. Drug Alcohol Depend 1998; 52(3): 211–20

    PubMed  CAS  Google Scholar 

  45. Wall M, Brine DR, Perez-Reyes M. The metabolism of naltrexone in man. NIDA Res Monogr 1981; 28: 105–31

    PubMed  CAS  Google Scholar 

  46. Greenstein R, Arndt IC, McLellan AT, et al. Naltrexone: a clinical perspective. J Clin Psychiatry 1984; 45(9): 25–8

    PubMed  CAS  Google Scholar 

  47. Breyer-Pfaff U, Nill K. Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol. J Pharm Pharmacol 2004; 56(12): 1601–6

    PubMed  CAS  Google Scholar 

  48. Porter SJ, Somogyi AA, White JM. Kinetics and inhibition of the formation of 6beta-naltrexol from naltrexone in human liver cytosol. Br J Clin Pharmacol 2000; 50(5): 465–71

    PubMed  CAS  Google Scholar 

  49. Elbekai R, Korashy H, El-Kadi A. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab 2004; 5: 157–67

    PubMed  CAS  Google Scholar 

  50. Pfohl DN, Allen JI, Atkinson RL, et al. Naltrexone hydrochloride (Trexan): a review of serum transaminase elevations at high dosage. NIDA Res Monogr 1986; 67: 66–72

    PubMed  CAS  Google Scholar 

  51. Mitchell JE. Naltrexone and hepatotoxicity. Lancet 1986; I(8491): 1215

    Google Scholar 

  52. Atkinson RL, Berke LK, Drake CR, et al. Effects of long-term therapy with naltrexone on body weight in obesity. Clin Pharmacol Ther 1985; 38(4): 419–22

    PubMed  CAS  Google Scholar 

  53. Guardia J, Caso C, Arias F, et al. A double-blind, placebocontrolled study of naltrexone in the treatment of alcoholdependence disorder: results from a multicenter clinical trial. Alcohol Clin Exp Res 2002; 26(9): 1381–7

    PubMed  CAS  Google Scholar 

  54. Sax DS, Kornetsky C, Kim A. Lack of hepatotoxicity with naltrexone treatment. J Clin Pharmacol 1994; 34(9): 898–901

    PubMed  CAS  Google Scholar 

  55. Hetrick W, Krutzik MN, Taylor DV, et al. Naltrexone has no hepatotoxic effects in a self-injurious patient with chronic hepatitis. J Clin Psychopharmacol 1993; 13(6): 453–4

    PubMed  CAS  Google Scholar 

  56. Marrazzi MA, Wroblewski JM, Kinzie J, et al. High-dose naltrexone and liver function safety. Am J Addict 1997; 6(1): 21–9

    PubMed  CAS  Google Scholar 

  57. Kim SW, Grant JE, Yoon G, et al. Safety of high-dose naltrexone treatment: hepatic transaminase profiles among outpatients. Clin Neuropharmacol 2006; 29(2): 77–9

    PubMed  CAS  Google Scholar 

  58. James RC, Goodman DR, Harbison RD. Hepatic glutathione and hepatotoxicity: changes induced by selected narcotics. J Pharmacol Exp Ther 1982 Jun; 221(3): 708–14

    PubMed  CAS  Google Scholar 

  59. Verbeeck RK, Horsmans Y. Effect of hepatic insufficiency on pharmacokinetics and drug dosing. Pharm World Sci 1998 20(5): 183–192

    PubMed  CAS  Google Scholar 

  60. Tanaka E. Clinical importance of non-genetic and genetic cytochrome P450 function tests in liver disease. J Clin Pharm Ther 1998; 23: 161–70

    PubMed  CAS  Google Scholar 

  61. Huo T, Lin H, Wu J, et al. Proposal of a modified child Turcotte-Pugh scoring system and comparison with the model for endstage liver disease for outcome prediction in patients with cirrhosis. Liver Transpl 2006; 12: 65–71

    PubMed  Google Scholar 

  62. Cholongitas E, Marelli L, Shusang V, et al. A systematic review of the performance of the model for end-stage liver disease (MELD) in the setting of liver transplantation. Liver Transpl 2006; 12(7): 1049–61

    PubMed  Google Scholar 

  63. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124(1): 91–6

    PubMed  Google Scholar 

  64. Schepke M, Roth F, Fimmers R, et al. Comparison of MELD, Child-Pugh, and Emory model for the prediction of survival in patients undergoing transjugular intrahepatic portosystemic shunting. Am J Gastroenterol 2003; 98(5): 1167–74

    PubMed  Google Scholar 

  65. Huo TI, Wu JC, Lin HC, et al. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child-Turcotte-Pugh score. J Hepatol 2005; 42(6): 826–32

    PubMed  Google Scholar 

  66. Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of Opioids in liver disease. Clin Pharmacokinet 1999; 37(1): 17–40

    PubMed  CAS  Google Scholar 

  67. Willens J, Myslkinski N. Pharmacodynamics, pharmacokinetics, and clinical uses of fentanyl, sufentanil, and alfentanil. Heart Lung 1993; 22(3): 239–51

    PubMed  CAS  Google Scholar 

  68. Gepts E, Schafer S, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995; 83(6): 1194–204

    PubMed  CAS  Google Scholar 

  69. Hudson RJ, Bergstrom RG, Thomson IR, et al. Pharmacokinetics of sufentanil in patients undergoing abdominal aortic surgery. Anesthesiology 1989; 70(3): 426–31

    PubMed  CAS  Google Scholar 

  70. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl, and sufentanil. Clin Pharmacokinet 1996; 31(4): 275–92

    PubMed  CAS  Google Scholar 

  71. Rodighiero V. Effects of liver disease on pharmacokinetics. Clin Pharmacokinet 1999; 37: 399–431

    PubMed  CAS  Google Scholar 

  72. Williams R. Drug administration in hepatic disease. N Engl J Med 1983; 309: 1616–22

    PubMed  CAS  Google Scholar 

  73. Hoyumpa A, Schenker S. Is glucuronidation truly preserved in patients with liver disease? Hepatology 1991; 13(4): 786–95

    PubMed  CAS  Google Scholar 

  74. Xie R, Hammarlund-Udenaes M. Blood-brain barrier equilibration of codeine in rats studied with microdialysis. Pharm Res 1998; 15(4): 570–5

    PubMed  CAS  Google Scholar 

  75. Stain-Texier F, Boschi G, Sandouk P, et al. Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 1999; 128(4): 917–24

    PubMed  CAS  Google Scholar 

  76. Lin JH. Tissue distribution and pharmacodynamics: a complicated relationship. Curr Drug Metab 2006; 7(1): 39–65

    PubMed  CAS  Google Scholar 

  77. Meineke I, Freudenthaler S, Hofmann U, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol 2002; 54(6): 592–603

    PubMed  CAS  Google Scholar 

  78. Letrent S, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27(7): 827–34

    PubMed  CAS  Google Scholar 

  79. Bourasset F, Scherrmann JM. Carrier-mediated processes at several rat brain interfaces determine the neuropharmacokinetics of morphine and morphine-6-beta-D-glucuronide. Life Sci 2006; 78(20): 2302–14

    PubMed  CAS  Google Scholar 

  80. Tunblad K, Jonsson EN, Hammarlund-Udenaes M. Morphine blood-brain barrier transport is influenced by probenecid coadministration. Pharm Res 2003; 20(4): 618–23

    PubMed  CAS  Google Scholar 

  81. Bourasset F, Cisternino S, Temsamani J, et al. Evidence for an active transport of morphine-6-beta-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem 2003; 86(6): 1564–7

    PubMed  CAS  Google Scholar 

  82. Larsen FS, Wendon J. Brain edema in liver failure: basic physiologic principles and management. Liver Transpl 2002; 8(11): 983–9

    PubMed  Google Scholar 

  83. Duchini A. The role of central nervous system endothelial cell activation in the pathogenesis of hepatic encephalopathy. Med Hypotheses 1996; 46(3): 239–44

    PubMed  CAS  Google Scholar 

  84. Belanger M, Asashima T, Ohtsuki S, et al. Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 2007; 50(1): 95–101

    PubMed  CAS  Google Scholar 

  85. LeCouteur D, Fraser R, Hilmer S, et al. The hepatic sinusoid in aging and cirrhosis. Clin Pharmacokinet 2005; 44(2): 187–200

    CAS  Google Scholar 

  86. Nolin TD, Frye RF, Matzke G. Hepatic drug metabolism and transport in patients with kidney disease. Am J Kidney Dis 2003; 42(5): 906–25

    PubMed  CAS  Google Scholar 

  87. Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 2001; 58: 737–47

    PubMed  CAS  Google Scholar 

  88. Westphal JF, Brogard JM. Drug administration in chronic liver disease. Drug Saf 1997; 17(1): 47–73

    PubMed  CAS  Google Scholar 

  89. Villeneuve JP, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab 2004; 5: 273–82

    PubMed  CAS  Google Scholar 

  90. Morgan D, McLean AJ. Clinical pharmacokinetics and pharmacodynamic considerations in patients with liver disease: an update. Clin Pharmacokinet 1995; 29(5): 370–91

    PubMed  CAS  Google Scholar 

  91. Frye R, Zgheib N, Matzke G, et al. Liver disease selectively modulates cytochrome P450 mediated metabolism. Clin Pharm Ther 2006; 80(3): 235–45

    CAS  Google Scholar 

  92. Joffe HV, Johnson FB, Longtine J, et al. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost 2004 Jun; 91(6): 1123–8

    PubMed  CAS  Google Scholar 

  93. George J, Liddle C, Murray M, et al. Pre-translational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol 1995; 49(7): 873–81

    PubMed  CAS  Google Scholar 

  94. Furlan V, Demirdjian S, Bourdon O, et al. Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther 1999; 289(2): 1169–75

    PubMed  CAS  Google Scholar 

  95. Congiu M, Mashford ML, Slavin J, et al. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos 2002; 30: 129–34

    PubMed  CAS  Google Scholar 

  96. Ouvina GB, Lemberg A, Bengochea LA. Changes in liver drug glucuronidation during cholestasis are non predictable. Arch Int Physiol Biochim Biophys 1994; 102: 121–3

    PubMed  CAS  Google Scholar 

  97. Desmond PV, Smyth FE, Mashford ML. Release of latent glucuronosyltransferase activity contributes to the sparing of glucurodination in experimental liver injuries. J Gastroenterol Hepatol 1994; 9(4): 350–4

    PubMed  CAS  Google Scholar 

  98. Turgeon D, Carrier JS, Levesque E, et al. Relative enzymatic activity, protein stability, and tissue distribution of human steroid metabolizing UGT2B subfamily members. Endocrinology 2001; 142(2): 778–87

    PubMed  CAS  Google Scholar 

  99. Laouari D, Yang R, Veau C, et al. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am J Physiol Renal Physiol 2001; 280(4): F636–45

    PubMed  CAS  Google Scholar 

  100. Nishihara K, Masuda S, Ji L, et al. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol 2007; 73(9): 1482–90

    PubMed  CAS  Google Scholar 

  101. Herrera J, Rodriguez-Iturbe B. Stimulation of tubular secretion of Creatinine in health and in conditions associated with reduced nephron mass: evidence for a tubular functional reserve. Nephrol Dial Transplant 1998; 13(3): 623–9

    PubMed  CAS  Google Scholar 

  102. Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol 1996; 23(10–11): 986–9

    PubMed  CAS  Google Scholar 

  103. Perri D, Ito S, Rowsell V, et al. The kidney: the body’s playground for drugs. An overview of renal drug handling with selected clinical correlates. Can J Clin Pharmacol 2003; 10(1): 17–23

    PubMed  Google Scholar 

  104. Yuan R, Venitz J. Effect of chronic renal failure on the disposition of highly hepatically metabolized drugs. Int J Clin Pharmacol Ther 2000; 38: 245–53

    PubMed  CAS  Google Scholar 

  105. Terao N, Shen DD. Reduced extraction of 1-proponolol by perfused rat liver in the presence of uremic blood. J Pharmacol Exp Ther 1985; 233: 277–84

    PubMed  CAS  Google Scholar 

  106. Bianchetti G, Graziani G, Brancaccio D, et al. Pharmacokinetics and effects of Propranolol in terminal uraemic patients and in patients undergoing regular dialysis treatment. Clin Pharmacokinet 1976; 1(5): 373–84

    PubMed  CAS  Google Scholar 

  107. Ahmed JH, Grant AC, Rodger RSC, et al. Inhibitory effect of uraemia on the hepatic clearance and metabolism of nicardipine. Br J Clin Pharmacol 1991; 32: 57–62

    PubMed  CAS  Google Scholar 

  108. Bourgoin S, Artaud F, Cesselin F, et al. Local and remote effects of intracaudate administration of GABA related drugs on metenkephalin release in the basal ganglia. Brain Res 1985; 361: 361–72

    PubMed  CAS  Google Scholar 

  109. Laidlaw J, Read AE, Sherlock S. Morphine tolerance in hepatic cirrhosis. Gastroenterology 1961; 40: 389–96

    PubMed  CAS  Google Scholar 

  110. Llorens-Cortes C, Van Amsterdam JG, Giros B, et al. Enkephalin biosynthesis and release in mouse striatum are inhibited by GABA receptor stimulation: compared changes in preproenkephalin mRNA and Try-Gly-Gly levels. Brain Res Mol Brain Res 1990; 8(3): 227–33

    PubMed  CAS  Google Scholar 

  111. Sivam S, Hong JS. GABAergic regulation of enkephalin in rat striatum: alterations in Met5 enkephalin level, precursor content and preproenkephalin messenger RNA abundance. J Pharmacol Exp Ther 1986; 237(1): 326–31

    PubMed  CAS  Google Scholar 

  112. Ahboucha S, Butterworth R. Pathophysiology of heptic encephalopathy: a new look at GABA from the molecular standpoint. Metab Brain Dis 2004; 19: 331–43

    PubMed  CAS  Google Scholar 

  113. Albrecht J, Jones EA. Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 1999; 170: 138–46

    PubMed  CAS  Google Scholar 

  114. Jones E, Basile AS. Does ammonia contribute to increased GABA-ergic neurotransmission in liver failure? Metab Brain Dis 1998; 13(4): 351–60

    PubMed  CAS  Google Scholar 

  115. Jones EA. Pathogenesis of liver disease. Clin Liver Dis 2000; 4(2): 467–85

    PubMed  CAS  Google Scholar 

  116. Reimer S, Hollt V. GABAergic regulation of striatal Opioid gene expression. Brain Res Mol Brain Res 1991; 10(1): 49–54

    PubMed  CAS  Google Scholar 

  117. Ahboucha S, Butterworth R. Role of endogenous benzodiazepine ligands and their GABA-A associated receptors in hepatic encephalopathy. Metab Brain Dis 2005; 20: 425–37

    PubMed  CAS  Google Scholar 

  118. Ahboucha S, Araqi F, Layrargues P, et al. Differential effects of ammonia on the benzodiazepine modulatory site on the GABA-A receptor complex of human brain. Neurochemistry Intl 2005; 47: 58–63

    CAS  Google Scholar 

  119. Sindrup SH, Brosen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 1995; 5(6): 335–46

    PubMed  CAS  Google Scholar 

  120. Lotsch J. Pharmacokinetic-pharmacodynamic modeling of Opioids. J Pain Symptom Manage 2005; 29 (5 Suppl.): S90–S103

    PubMed  Google Scholar 

  121. Lotsch J, Skarke C, Schmidt H, et al. Evidence for morphineindependent central nervous Opioid effects after administration of codeine: contribution of other codeine metabolites. Clin Pharmacol Ther 2006; 79(1): 35–48

    PubMed  Google Scholar 

  122. Somogyi A, Menelaou A, Fullston SV. CYP3A4 mediates dextropropoxyphene N-demethylation to nordextropropoxyphene: human in vitro and in vivo studies and lack of CYP2D6 involvement. Xenobiotica 2004; 34(10): 875–87

    PubMed  CAS  Google Scholar 

  123. Inturrisi C, Colburn WA, Verebey K, et al. Propoxyphene and norpropoxyphene kinetics after single and repeated doses of propoxyphene. Clin Pharmacol Ther 1982; 31(2): 157–67

    PubMed  CAS  Google Scholar 

  124. Flanagan R, Johnston A, White AS, et al. Pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in young and elderly volunteers after single and multiple dextropropoxyphene dosage. Br J Clin Pharmacol 1989; 28(4): 463–9

    PubMed  CAS  Google Scholar 

  125. Ulens C, Daenens P, Tytgat J. Norpropoxyphene induced cardiotoxicity is associated with changes in ion-selectivity and gating of HERG currents. Cardiovasc Res 1999; 44(3): 568–78

    PubMed  CAS  Google Scholar 

  126. Horsmans Y, Desager JP, Daenens C, et al. D-propoxyphene and norpropocyphene kinetics after the oral administration of D-propoxyphene: a new approach to liver function? J Hepatol 1994; 21(3): 283–91

    PubMed  CAS  Google Scholar 

  127. Rosenberg W, Ryley NG, Trowell JM, et al. Dextropropoxyphene induced hepatotoxicity: a report of nine cases. J Hepatol 1993; 19(3): 470–4

    PubMed  CAS  Google Scholar 

  128. Girre C, Hirschhorn M, Bertaux L, et al. Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers. Eur J Clin Pharmacol 1991; 41(2): 147–52

    PubMed  CAS  Google Scholar 

  129. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43(13): 879–923

    PubMed  CAS  Google Scholar 

  130. Kalso E. Oxycodone. J Pain Symptom Manage 2005; 29(55): S47–56

    PubMed  CAS  Google Scholar 

  131. Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 2006; 79(5): 461–79

    PubMed  CAS  Google Scholar 

  132. Kaiko R. Pharmacokinetics and pharmacodynamics of controlled release Opioids. Acta Anaesthesiol Scand 1997; 41: 166–74

    PubMed  CAS  Google Scholar 

  133. Tallgren M, Olkkola KT, Seppala T, et al. Pharmacokinetics and ventilatory effects of oxycodone before and after liver transplantation. Clin Pharmacol Ther 1997; 61(6): 655–61

    PubMed  CAS  Google Scholar 

  134. Coluzzi F, Mattia C. Oxycodone: pharmacological profile and clinical data in chronic pain management. Minerva Anestesiol 2005; 71: 451–60

    PubMed  CAS  Google Scholar 

  135. Kirvela M, LIndgren L, Seppala T, et al. The pharmacokinetics of oxycodone in uremic patients undergoing renal transplantation. J Clin Anesth 1996; 8(1): 13–8

    PubMed  CAS  Google Scholar 

  136. Vallner JJ, Stewart JT, Kotzan JA, et al. Pharmacokinetics and bioavailability of hydromorphone following intravenous and oral administration to human subjects. J Clin Pharmacol 1981; 21(4): 152–6

    PubMed  CAS  Google Scholar 

  137. Murray A, Hagen NA. Hydromorphone. J Pain Symptom Manage 2005; 29 Suppl. 5: S57–66

    PubMed  CAS  Google Scholar 

  138. Wright A, Mather LE, Smith MT. Hydromorphone 3 glucuronide: a more potent neuro-excitant than its structural analogue, morphine 3 glucuronide. LifeSci 2001; 69: 409–20

    CAS  Google Scholar 

  139. Hemstapat K, Monteith GR, Smith D, et al. Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of N-methyl-D-aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg 2003; 97(2): 494–505

    PubMed  CAS  Google Scholar 

  140. Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 2000; 27(7): 524–8

    PubMed  CAS  Google Scholar 

  141. Durnin C, Hind ID, Ghani SP, et al. Pharmacokinetics of oral immediate release hydromorphone (Dilaudid IR) in subjects with moderate hepatic impairment. Proc West Pharmacol Soc 2001; 44: 83–4

    PubMed  CAS  Google Scholar 

  142. Schali C, Roch-Ramel F. Transport and metabolism of [3H]morphine in isolated, nonperfused proximal tubular segments of the rabbit kidney. J Pharmacol Exp Ther 1982 Dec; 223(3): 811–5

    PubMed  CAS  Google Scholar 

  143. Watrous WM, May DG, Fujimoto JM. Mechanism of the renal tubular transport of morphine and morphine ethereal sulfate in the chicken. J Pharmacol Exp Ther 1970 Apr; 172(2): 224–9

    PubMed  CAS  Google Scholar 

  144. Somogyi AA, Nation RL, Olweny C, et al. Plasma concentrations and renal clearance of morphine, morphine-3-glucuronide and morphine-6-glucuronide in cancer patients receiving morphine. Clin Pharmacokinet 1993 May; 24(5): 413–20

    PubMed  CAS  Google Scholar 

  145. Van Crugten JT, Sallustio BC, Nation RL, et al. Renal tubular transport of morphine, morphine-6-glucuronide, and morphine-3-glucuronide in the isolated perfused rat kidney. Drug Metab Dispos 1991 Nov–Dec; 19(6): 1087–92

    PubMed  Google Scholar 

  146. Angst MS, Buhrer M, Lotsch J. Insidious intoxication after morphine treatment in renal failure: delayed onset of morphine-6-glucuronide action. Anesthesiology 2000 May; 92(5): 1473–6

    PubMed  CAS  Google Scholar 

  147. Milne RW, McLean CF, Mather LE, et al. Influence of renal failure on the disposition of morphine, morphine-3-glucuronide and morphine-6-glucuronide in sheep during intravenous infusion with morphine. J Pharmacol Exp Ther 1997 Aug; 282(2): 779–86

    PubMed  CAS  Google Scholar 

  148. Eguchi M. Recent advances in selective Opioid receptor agonists and antagonists. Medicinal Res Rev 2004; 24(2): 182–212

    CAS  Google Scholar 

  149. Elkader A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of Opioid dependence. Clin Pharmacokinet 2005; 44(7): 661–80

    PubMed  CAS  Google Scholar 

  150. Herve S, Riachi G, Noblet C, et al. Acute hepatitis due to buprenorphine administration. Eur J Gastroenterol Hepatol 2004; 16: 1033–7

    PubMed  CAS  Google Scholar 

  151. Ohtani M, Kotaki H, Sawada Y, et al. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther 1995; 272(2): 505–10

    PubMed  CAS  Google Scholar 

  152. Dahan A. Opioid-induced respiratory effects: new data on buprenorphine. Palliat Med 2006; 20 Suppl. 1: s3–8

    PubMed  Google Scholar 

  153. Cone E, Gorodetzky CW, Yousefnejad D, et al. The metabolism of excretion of buprenorphine in humans. Drug Metab Dispos 1984; 12(5): 577–81

    PubMed  CAS  Google Scholar 

  154. Yassen A, Olofsen E, Romberg R, et al. Mechanism-based pharmacokinetic pharmacodynamic modeling of the antinociceptive effect of buprenorphine in healthy volunteers. Anesthesiology 2006; 104: 1232–42

    PubMed  CAS  Google Scholar 

  155. Roberts M, Magnusson BM, Burczynski FJ, et al. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 2002; 41(10): 751–90

    PubMed  CAS  Google Scholar 

  156. Buprenorphine replacement therapy: a confirmed benefit. Prescrire Int 2006; 15 (82): 64-70

  157. Filitz J, Griessinger N, Sittl R, et al. Effects of intermittent hemodialysis on buprenorphine and norbuprenorphine plasma concentrations in chronic pain patients treated with transdermal buprenorphine. Eur J Pain 2006; 10: 743–8

    PubMed  CAS  Google Scholar 

  158. Hand C, Sear JW, Uppington J, et al. Buprenorphine disposition in patients with renal impairment: single and continuous dosing, with special reference to metabolites. Br J Anaesth 1990; 64(3): 276–82

    PubMed  CAS  Google Scholar 

  159. Ferrari A, Coccia CP, Bertolini A, et al. Methadone: metabolism, pharmacokinetics and interactions. Pharmacol Res 2004; 50: 551–9

    PubMed  CAS  Google Scholar 

  160. Eap C, Buclin T, Baumann P. Interindividual variability of the clinical phramacokinetics of methadone: implications for the treatment of Opioid dependence. Clin Pharmacokinet 2002; 41(14): 1153–93

    PubMed  CAS  Google Scholar 

  161. Yang F, Tong X, McCarver G, et al. Population based analysis of methadone distribution and metabolism using an age dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn 2006; 33(4): 485–518

    PubMed  CAS  Google Scholar 

  162. Kharasch E, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance: implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50

    PubMed  CAS  Google Scholar 

  163. Crettol S, Deglon JJ, Besson J, et al. Methadone enantiome plasma levels, CYP2B6, CYP2C19, CYP2C9 genotypes, and response to treatment. Clin Pharm and Ther 2005; 78(6): 593–604

    CAS  Google Scholar 

  164. Kreek M. Plasma and urine levels of methadone: comparison following four medication forms used in chronic maintenance treatment. N Y State J Med 1973; 73: 2773–7

    PubMed  CAS  Google Scholar 

  165. Wolff K, Hay AW, Raistrick D, et al. Steady state pharmacokinetics of methadone in Opioid addicts. Eur J Clin Pharmacol 1993; 44(2): 189–94

    PubMed  CAS  Google Scholar 

  166. Verrando R, Robaeys G, Mathei C, et al. Methadone and buprenorphine maintenance therapies for patients with hepatitis C virus infected after intravenous drug use. Acta Gastroenterol Belg 2005; 68(1): 81–5

    PubMed  CAS  Google Scholar 

  167. Maxwell S, Shinderman M, Miner A, et al. Correlation between hepatitis C serostatus and methadone dose requirement in 1163 methadone maintained patients. Heroin Addict Relat Clin Probl 2002; 4(2): 5–10

    Google Scholar 

  168. Okruhlica L, Klempova D. Hepatitis C infected patients and higher doses of methadone. Heroin Addict Relat Clin Probl 2000; 2: 57–8

    Google Scholar 

  169. Novick D, Kreek MJ, Arns PA, et al. Effect of severe alcoholic liver disease on the disposition of methadone in maintenance patients. Alcohol Clin Exp Res 1985; 9(4): 349–54

    PubMed  CAS  Google Scholar 

  170. Novick D, Stenger RJ, Gelb AM, et al. Chronic liver disease in abusers of alcohol and parenteral drugs: a report of 204 consecutive biopsy proven cases. Alcohol Clin Exp Res 1986; 10(5): 500–5

    PubMed  CAS  Google Scholar 

  171. Novick D, Kreek MJ, Fanizza AM, et al. Methadone disposition in patients with chronic liver disease. Clin Pharmacol Ther 1981; 30(3): 353–62

    PubMed  CAS  Google Scholar 

  172. Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manage 2004; 28(5): 497–504

    PubMed  CAS  Google Scholar 

  173. Murtagh F, Addington-Hall JM, Donohoe P, et al. Symptom management in patients with established renal failure managed without dialysis. EDTNA ERCA J 2006; 32(2): 93–8

    PubMed  CAS  Google Scholar 

  174. Davies G, Kingswood C, Street M. Pharmacokinetics of Opioids in renal dysfunction. Clin Pharmacokinet 1996; 6: 410–22

    Google Scholar 

  175. Julius HC, Levine HL, Williams WD. Meperidine binding to isolated alpha 1-acid glycoprotein and albumin. DICP 1989; 23(7–8): 568–72

    PubMed  CAS  Google Scholar 

  176. Koska 3rd AJ, Kramer WG, Romagnoli A, et al. Pharmacokinetics of high-dose meperidine in surgical patients. Anesth Analg 1981; 60(1): 8–11

    PubMed  Google Scholar 

  177. Herman RJ, McAllister CB, Branch RA, et al. Effects of age on meperidine disposition. Clin Pharmacol Ther 1985; 37(1): 19–24

    PubMed  CAS  Google Scholar 

  178. Verbeeck RK, Branch RA, Wilkinson GR. Meperidine disposition in man: influence of urinary pH and route of administration. Clin Pharmacol Ther 1981; 30(5): 619–28

    PubMed  CAS  Google Scholar 

  179. Kaiko RF, Foley KM, Grabinski PY, et al. Central nervous system excitatory effects of meperidine in cancer patients. Ann Neural 1983; 13(2): 180–5

    CAS  Google Scholar 

  180. Marinella MA. Meperidine-induced generalized seizures with normal renal function. South Med J 1997; 90(5): 556–8

    PubMed  CAS  Google Scholar 

  181. McHorse TS, Wilkinson GR, Johnson RF, et al. Effect of acute viral hepatitis in man on the disposition and elimination of meperidine. Gastroenterology 1975; 68 (4 Pt 1): 775–80

    PubMed  CAS  Google Scholar 

  182. Klotz U, McHorse TS, Wilkinson GR, et al. The effect of cirrhosis on the disposition and elimination of meperidine in man. Clin Pharmacol Ther 1974; 16(4): 667–75

    PubMed  CAS  Google Scholar 

  183. McHorse TS, Klotz U, Wilkinson G, et al. Impaired elimination of meperidine in patients with liver disease. Trans Assoc Am Physicians 1974; 87: 281–7

    PubMed  CAS  Google Scholar 

  184. Danziger LH, Martin SJ, Blum RA. Central nervous system toxicity associated with meperidine use in hepatic disease. Pharmacotherapy 1994; 14(2): 235–8

    PubMed  CAS  Google Scholar 

  185. Pond SM, Tong T, Benowitz NL, et al. Presystemic metabolism of meperidine to normeperidine in normal and cirrhotic subjects. Clin Pharmacol Ther 1981; 30(2): 183–8

    PubMed  CAS  Google Scholar 

  186. Stock SL, Catalano G, Catalano MC. Meperidine associated mental status changes in a patient with chronic renal failure. J Fla Med Assoc 1996; 83(5): 315–9

    PubMed  CAS  Google Scholar 

  187. Kapila A, Glass PS, Jacobs JR, et al. Measured context sensitive half times of remifentanil and alfentanil. Anesthesiology 1995; 83(5): 968–75

    PubMed  CAS  Google Scholar 

  188. Katz R, Kelly HW. Pharmacokinetics of continuous infusions of fentanyl in critically ill children. Crit Care Med 1993; 21(7): 995–1000

    PubMed  CAS  Google Scholar 

  189. Camu F, Gepts E, Rucquoi M, et al. Pharmacokinetics of alfentanil in man. Anesth Analg 1982; 61(8): 657–61

    PubMed  CAS  Google Scholar 

  190. Ibrahim A, Feldman J, Karim A, et al. Simultaneous assessment of drug interactions with low and high extraction Opioids. Anesthesiology 2003; 98: 853–61

    PubMed  CAS  Google Scholar 

  191. Klees T, Sheffels P, Dale O, et al. Metabolism of alfentanil by cytochrome P4503A (CYP3A) enzymes. Drug Met and Disp 2005; 33(3): 303–11

    CAS  Google Scholar 

  192. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62(4): 480–4

    PubMed  CAS  Google Scholar 

  193. Chauvin M, Lebrault C, Levron JC, et al. Pharmacokinetics of alfentanil in chronic renal failure. Anesth Analg 1987; 66(1): 53–6

    PubMed  CAS  Google Scholar 

  194. Raucoules-Aimé M, Kaidomar M, Levron JC, et al. Hepatic disposition of alfentanil and sufentanil in patients undergoing orthotopic liver transplantation. Anesth Analg 1997; 84(5): 1019–24

    PubMed  Google Scholar 

  195. Shafer S, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational Opioid selection. Anesthesiology 1991; 74(1): 53–63

    PubMed  CAS  Google Scholar 

  196. Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anaesthesia 1996; 82(1): 167–72

    CAS  Google Scholar 

  197. Guitton J, Buronfosse T, Desage M, et al. Possible involvement of multiple cytochrome P450s in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 1997; 53(11): 1613–9

    PubMed  CAS  Google Scholar 

  198. Lange H, Stephan H, Zielmann S, et al. Hepatic disposition of sufentanil in patients undergoing coronary bypass surgery. Acta Anaesthesiol Scand 1993; 37(2): 154–8

    PubMed  CAS  Google Scholar 

  199. Fyman PN, Reynolds JR, Moser F, et al. Pharmacokinetics of sufentanil in patients undergoing renal transplantation. Can J Anaesth 1988; 35: 312–5

    PubMed  CAS  Google Scholar 

  200. Mildh L, Scheinin H, Kirvela O. The concentration effect relationship of the respiratory depressant effects of alfentanil and fentanyl. Anesth Analg 2001; 93: 939–46

    PubMed  CAS  Google Scholar 

  201. Haberer JP, Schoeffler P, Couderc E, et al. Fentanyl pharmacokinetics in anaesthesized patients with cirrhosis. Br J Anaesth 1982; 54(12): 1267–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the skills of Joan Scharf in the preparation of this manuscript. The author provided consultancy to Valeant Pharmaceuticals and Mallinkrodt Pharmaceuticals. No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M. Cholestasis and Endogenous Opioids. Clin Pharmacokinet 46, 825–850 (2007). https://doi.org/10.2165/00003088-200746100-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746100-00002

Keywords

Navigation