Skip to main content
Log in

Pharmacokinetic Changes in the Elderly

Do They Contribute to Drug Abuse and Dependence?

  • Review Article
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The elderly frequently use psychoactive drugs including alcohol (ethanol), benzodiazepines and opioid analgesics, which have a propensity to cause abuse and dependence. Theoretically, the changes in pharmacokinetics of these agents in the elderly may modify their abuse and dependence potential. In the elderly, blood alcohol concentrations following an oral dose are higher, alcohol withdrawal syndrome follows a more severe and protracted clinical course and requires treatment with higher doses of chlordiazepoxide than needed for younger adults. However, there is no direct evidence that supports an increased direct abuse and dependence potential of alcohol because of its altered kinetics in the elderly.

In the case of oxidatively metabolised benzodiazepines, both age-related pharmacokinetic and pharmacodynamic changes may increase their clinical effects in the elderly. The hypothesis that benzodiazepines have an increased abuse and dependence potential in the elderly has not been tested. Many of the benzodiazepines (e.g. alprazolam, triazolam and midazolam) are metabolised by the cytochrome P450 (CYP) 3A subfamily. The pharmacokinetics of these agents may be modified by inhibition of CYP3A due to concurrently administered medications such as selective serotonin reuptake inhibitors. Unfortunately, data on the direct measures of abuse and dependence potential of benzodiazepines are not available in the elderly. Thus, a conclusive statement on the contribution of age-related pharmacokinetic changes to benzodiazepine abuse and dependence cannot be made at the present time.

The clinical effects of codeine do not appear to change with age. Codeine is O-demethylated to its active metabolite morphine by the genetically polymorphic CYP2D6 isozyme. The activity of this isozyme is unaltered by age, gender or smoking habits; however, it is subject to potent inhibition by some of the frequently used medications in the elderly, such as the antidepressants paroxetine and fluoxetine. This may result in an impairment in O-demethylation of codeine to morphine and may lead to a decrease in the abuse and dependence potential of codeine. Conversely, those with a very rapid CYP2D6 catalytic activity may have an increased potential for codeine abuse and dependence.

The clinical significance of age-related pharmacokinetic changes should be evaluated within the context of clinical practice. Most physicians are inclined to prescribe lower doses to the elderly, which may offset the potential impact of altered pharmacokinetics on the abuse and dependence potential of psychoactive agents.

Insummary, the available data are not sufficient for a definitive conclusion on whether the pharmacokinetic changes in the elderly translate to an increase in the abuse and dependence potential of alcohol, benzodiazepines or opioids. In particular, the data on age-associated changes in direct measures of abuse potential of these agents are missing. Future comparative systematic pharmacokinetic-pharmacodynamic studies assessing pertinent outcome measures on abuse and dependence potential of commonly used psychoactive drugs are required to resolve the ongoing controversy on risk factors for drug abuse and dependence in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naranjo CA, Herrmann N, Özdemir V, et al. Abuse of prescription and licit psychoactive substances by the elderly: issues and recommendations. CNS Drugs 1995; 4(3): 207–21

    Google Scholar 

  2. The use of alcohol and other drugs by older Canadians and its consequences. Catalogue No. H39-259/1992E. Ottawa: Health and Welfare Canada, 1992

  3. Simons LA, Tett S, Simons J, et al. Multiple medication use in the elderly: use of prescription and non-prescription drugs in an Australian community setting. Med J Aust 1992; 157: 242–6

    PubMed  CAS  Google Scholar 

  4. Shorr RI, Bauwens SF, Landefeld CS. Failure to limit quantities of benzodiazepine hypnotic drugs for outpatients: placing the elderly at risk. Am J Med 1990; 89: 725–32

    PubMed  CAS  Google Scholar 

  5. Mant A, Duncan-Jones P, Saltman D, et al. Development of long term use of psychotropic drugs by general practice patients. BMJ 1988; 296: 251–4

    PubMed  CAS  Google Scholar 

  6. Morgan K, Dallosso H, Ebrahim S, et al. Prevalence, frequency and duration of hypnotic use among the elderly living at home. BMJ 1988; 296: 601–2

    PubMed  CAS  Google Scholar 

  7. Woods JH, Katz JL, Winger G. Use and abuse of benzodiazepines: issues relevant to prescribing. JAMA 1988; 260: 3476–80

    PubMed  CAS  Google Scholar 

  8. Koenig W, Ruther E, Filipiak B. Psychotropic drug utilization patterns in a metropolitan population. Eur J Clin Pharmacol 1987; 32: 43–51

    PubMed  CAS  Google Scholar 

  9. Woods JH, Katz JL, Winger G. Abuse liability of benzodiazepines. Pharmacol Rev 1987; 39: 251–413

    PubMed  CAS  Google Scholar 

  10. Glynn RJ, Bouchard GR, LoCastro JS, et al. Aging and generational effects on drinking behaviors in men: results from the normative aging study. Am J Public Health 1985; 75: 1413–9

    PubMed  CAS  Google Scholar 

  11. Mellinger GD, Balter MB, Uhlenhuth EH. Insomnia and its treatment: prevalence and correlates. Arch Gen Psychiatry 1985; 42: 225–32

    PubMed  CAS  Google Scholar 

  12. Morgan K. Sedative-hypnotic drug use and ageing. Arch Gerontol Geriatr 1983; 2: 181–99

    PubMed  CAS  Google Scholar 

  13. Salzman C, Fisher J, Nobel K, et al. Cognitive improvement following benzodiazepine discontinuation in elderly nursing home residents. Int J Geriatr Psychiatry 1992; 7: 89–93

    Google Scholar 

  14. Kruse WHH. Problems and pitfalls in the use of benzodiazepines in the elderly. Drug Saf 1990; 5: 328–44

    PubMed  CAS  Google Scholar 

  15. Sorock GS, Shimkin EE. Benzodiazepine sedatives and the risk of falling in a community-dwelling elderly cohort. Arch Intern Med 1988; 148: 2441–4

    PubMed  CAS  Google Scholar 

  16. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among the elderly persons living in the community. N Engl J Med 1988; 319: 1701–7

    PubMed  CAS  Google Scholar 

  17. Larson EB, Kukull WA, Buchner DA, et al. Adverse drug reactions associated with global cognitive impairment in elderly persons. Ann Intern Med 1987; 107: 169–73

    PubMed  CAS  Google Scholar 

  18. Ray W, Griffin M, Schaffner W, et al. Psychotropic drug use and the risk of hip fracture. N Engl J Med 1987; 316: 363–9

    PubMed  CAS  Google Scholar 

  19. Greenblatt DJ, Allen MD. Toxicity of nitrazepam in the elderly: a report from the Boston Collaborative Drug Surveillance Program. Br J Clin Pharmacol 1978; 5: 407–13

    PubMed  CAS  Google Scholar 

  20. Greenblatt DJ, Allen MD, Shader RI. Toxicity of high-dose flurazepam in the elderly. Clin Pharmacol Ther 1977; 21: 355–61

    PubMed  CAS  Google Scholar 

  21. Busto UE, Lanctot KL, Bremner KE. et al. Benzodiazepine kinetics contribute to their differential abuse. Can J Clin Pharmacol 1995; 2(1): 23–28

    Google Scholar 

  22. Naranjo CA, Busto UE. Dose response relationships in drug dependence in humans. In: Lasagna L, Erill S, Naranjo CA, editors. Dose-response relationships in clinical pharmacology. Amsterdam: Elsevier Science Publishers Biomedical Division, 1989: 79–92

    Google Scholar 

  23. Sellers EM, Busto U, Kaplan HL. Pharmacokinetic and pharmacodynamic drug interactions: implications for abuse liability testing. In: Fishman MW, Mello NK, editors. Testing for abuse liability of drugs. NIDA Res Monogr 1989; 92: 287–306

    PubMed  CAS  Google Scholar 

  24. Busto U, Sellers EM. Pharmacokinetic determinants of drug abuse and dependence: a conceptual perspective. Clin Pharmacokinet 1986; 11: 144–53

    PubMed  CAS  Google Scholar 

  25. Higuchi S, Matsushita S, Murayama M, et al. Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry 1995; 152: 1219–21

    PubMed  CAS  Google Scholar 

  26. Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25(3): 277–90

    PubMed  CAS  Google Scholar 

  27. Von Moltke LL, Greenblatt DJ, Schmider J, et al. Metabolism of drugs by cytochrome P450 3A isoforms: implications for drug interactions in psychopharmacology. Clin Pharmacokinet 1995; 29 Suppl. 1: 33–44

    Google Scholar 

  28. Robin DW, Lee M, Hasan SS, et al. Triazolam in cirrhosis: pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1993; 54: 630–7

    PubMed  CAS  Google Scholar 

  29. Cholerton S, Daly AK, Idle JR. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 1992; 13: 434–9

    PubMed  CAS  Google Scholar 

  30. Murray M. P450 enzymes: Inhibition mechanisms, genetic regulation and effects of liver disease. Clin Pharmacokinet 1992; 23: 132–46

    PubMed  CAS  Google Scholar 

  31. Durnas C, Loi C, Cusack BJ. Hepatic drug metabolism and aging. Clin Pharmacokinet 1990; 19: 359–89

    PubMed  CAS  Google Scholar 

  32. Vestal RE. Aging and determinants of hepatic drug clearance. Hepatology 1989; 9: 331–4

    PubMed  CAS  Google Scholar 

  33. Farrell GC. Drug metabolism in extrahepatic diseases. Pharmacol Ther 1987; 35: 375–404

    PubMed  CAS  Google Scholar 

  34. Teng YS. Human liver aldehyde dehydrogenase in Chinese and Asiatic Indians: gene detection and the possible implication in alcohol metabolism. Biochem Genet 1981; 19: 107–13

    PubMed  CAS  Google Scholar 

  35. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  36. Shader RI, Greenblatt DJ. Use of benzodiazepines in anxiety disorders. N Engl J Med 1993; 328: 1398–405

    PubMed  CAS  Google Scholar 

  37. Woolverton WL, Wessinger WD, Balster RL. Reinforcing properties of clonidine in rhesus monkeys. Psychopharmacology 1982; 77: 17–23

    PubMed  CAS  Google Scholar 

  38. Meyer DR, El-Azhary R, Bierer DWS, et al. Tolerance and dependence after chronic administration of clonidine to the rat. Pharmacol Biochem Behav 1977; 7: 227–31

    PubMed  CAS  Google Scholar 

  39. Winger GD, Stitzer M, Woods JH. Barbiturate-reinforced responding in rhesus monkeys: comparison of drugs with different durations of actions. J Pharmacol Exp Ther 1975; 195: 505–14

    PubMed  CAS  Google Scholar 

  40. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations (Pt I). Clin Pharmacokinet 1991; 21: 165–77

    PubMed  CAS  Google Scholar 

  41. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations (Pt II). Clin Pharmacokinet 1991; 21: 262–273

    PubMed  CAS  Google Scholar 

  42. Davies KN, Castleden CM, McBurney A, et al. The effect of ageing on the pharmacokinetics of dihydrocodeine. Eur J Clin Pharmacol 1989; 37: 375–9

    PubMed  CAS  Google Scholar 

  43. Owen JA, Sitar DS, Berger L, et al. Age-related morphine kinetics. Clin Pharmacol Ther 1983; 34: 364–8

    PubMed  CAS  Google Scholar 

  44. Pozzato G, Moretti M, Franzin F, et al. Ethanol metabolism and aging: the role of ‘first pass metabolism’ and gastric alcohol dehydrogenase activity. J Gerontol 1995; 50A(3): B135–41

    CAS  Google Scholar 

  45. Vestal RE, McGuire EA, Tobin JD, et al. Aging and ethanol metabolism. Clin Pharmacol Ther 1976; 21: 343–54

    Google Scholar 

  46. Busto U, Lanctot KL, Isaac P, et al. Benzodiazepine use and abuse in Canada. Can Med Assoc J 1989; 141: 917–21

    CAS  Google Scholar 

  47. Gurwitz JH, Avorn J. The ambiguous relation between aging and adverse drug reactions. Ann Intern Med 1991; 114: 956–966

    PubMed  CAS  Google Scholar 

  48. Greenblatt DJ, Shader RI, Harmatz JS. Implications of altered drug disposition in the elderly: studies of benzodiazepines. J Clin Pharmacol 1989; 29: 866–72

    PubMed  CAS  Google Scholar 

  49. Rodrigo EK, King MB, Williams P. Health of long term benzodiazepine users. BMJ 1988; 296: 603–6

    PubMed  CAS  Google Scholar 

  50. Shader RI, Greenblatt DJ. Benzodiazepine overuse-misuse. J Clin Psychopharmacol 1984; 4: 123–4

    PubMed  CAS  Google Scholar 

  51. Greenblatt DJ, Harmatz JS, Shapiro L, et al. Sensitivity to triazolam in the elderly. N Engl J Med 1991; 324: 1691–8

    PubMed  CAS  Google Scholar 

  52. Ammon E, Schafer C, Hofmann U, et al. Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender? Clin Pharmacol Ther 1996; 59: 503–13

    PubMed  CAS  Google Scholar 

  53. Wagner JG. Intrasubject variation in elimination half-lives of drugs which are appreciably metabolized. J Pharmacokinet Biopharm 1973; 1: 165–73

    PubMed  CAS  Google Scholar 

  54. Liskow BI, Rinck C, Campbell J. Alcohol withdrawal in the elderly. J Stud Alcohol 1989; 50: 414–21

    PubMed  CAS  Google Scholar 

  55. Shibuya A, Yoshida A. Frequency of the atypical aldehyde de-hydrogenase-2 gene (ALDH2) in Japanese and Caucasians. Am J Hum Genet 1988; 43: 741–3

    PubMed  CAS  Google Scholar 

  56. Brien JF, Loomis CW. Aldehyde dehydrogenase inhibitors as alcohol-sensitizing drugs: a pharmacological perspective. Trends Pharmacol Sci 1985; 6: 478–80

    Google Scholar 

  57. Thomasson HR, Edenberg HJ, Crabb DW, et al. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet 1991; 48: 677–81

    PubMed  CAS  Google Scholar 

  58. Hawley CJ, Tattersall M, Dellaportas C, et al. Comparison of long-term benzodiazepine users in three settings. Br J Psychiatry 1994; 165: 792–6

    PubMed  CAS  Google Scholar 

  59. Balter MB, Manheimer DI, Mellinger GD, et al. A cross-national comparison of anti-anxiety/sedative drug use. Curr Med Res Opin 1984; 8 Suppl. 4: 5–20

    PubMed  Google Scholar 

  60. Barnhill JG, Greenblatt DJ, Miller LG, et al. Kinetic and dynamic components of increased benzodiazepine sensitivity in aging animals. J Pharmacol Exp Ther 1990; 253: 1153–61

    PubMed  CAS  Google Scholar 

  61. Cook PJ, Flanagan R, James IM. Diazepam tolerance: effect of age, regular sedation, and alcohol. BMJ 1984; 289: 351–3

    PubMed  CAS  Google Scholar 

  62. Swift CG, Ewen JM, Clarke P, et al. Responsiveness to oral diazepam in the elderly: relationship to total and free plasma concentrations. Br J Clin Pharmacol 1985; 20: 111–8

    PubMed  CAS  Google Scholar 

  63. Suhara T, Inoue O, Kobayashi K, et al. No age-related changes in human benzodiazepine receptor binding measured by PET with [11C]Ro 15-4513. Neurosci Lett 1993; 159: 207–10

    PubMed  CAS  Google Scholar 

  64. Evans SM, Critchfield TS, Griffiths RR. Abuse liability assessment of anxiolytics/hypnotics: rationale and laboratory core. Br J Addict 1991; 86: 1625–32

    PubMed  CAS  Google Scholar 

  65. Fischman MW, Foltin RW. Utility of subjective-effects measurements in assessing abuse liability of drugs in humans. Br J Addict 1991; 86: 1563–70

    PubMed  CAS  Google Scholar 

  66. Jasinski DR, Johnson RE, Henningfield JE. Abuse liability assessment in human subjects. Trends Pharmacol Sci 1984; 5: 196–200

    CAS  Google Scholar 

  67. Johanson CE, Uhlenhuth EH. Drug preference and mood in humans: diazepam. Psychopharmacology 1980; 71: 269–73

    PubMed  CAS  Google Scholar 

  68. De Wit H, Johanson CE, Uhlenhuth EH. The dependence potential of benzodiazepines. Curr Med Res Opin 1984; 8: 48–59

    PubMed  Google Scholar 

  69. De Wit H, Uhlenhuth EH, Johanson CE. Lack of preference for flurazepam in normal volunteers. Pharmacol Biochem Behav 1984; 21: 865–9

    PubMed  Google Scholar 

  70. De Wit H, Uhlenhuth EH, Hedeker D. Lack of preference for diazepam in anxious volunteers. Arch Gen Psychiatry 1986; 43: 533–41

    PubMed  Google Scholar 

  71. Griffiths RR, Bigelow G, Liebson I. Human drug self-administration: double-blind comparison of pentobarbital, diazepam, chlorpromazine and placebo. J Pharmacol Exp Ther 1979; 210: 301–10

    PubMed  CAS  Google Scholar 

  72. Griffiths RR, Bigelow GE, Liebson I, et al. Drug preference in humans: double-blind comparison of pentobarbital, diazepam, and placebo. J Pharmacol Exp Ther 1980; 215: 649–61

    PubMed  CAS  Google Scholar 

  73. Griffiths RR, McLeod DR, Bigelow GE, et al. Comparison of diazepam and oxazepam: preference, liking and extent of abuse. J Pharmacol Exp Ther 1984; 229: 501–8

    PubMed  CAS  Google Scholar 

  74. Pollock BG, Perel JM, Altieri LP, et al. Debrisoquine hydroxylation phenotyping in geriatric psychopharmacology. Psychopharmacol Bull 1992; 28: 163–8

    PubMed  CAS  Google Scholar 

  75. Schmucker DL, Woodhouse KW, Wang RK, et al. Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clin Pharmacol Ther 1990; 48: 365–74

    PubMed  CAS  Google Scholar 

  76. Wynne HA, Mutch E, James OFW, et al. The effect of age upon the affinity of microsomal monooxygenase enzymes for substrate in human liver. Age Ageing 1988; 17: 401–5

    PubMed  CAS  Google Scholar 

  77. Schmucker DL. Aging and drug disposition: an update. Pharmacol Rev 1985; 37: 133–48

    PubMed  CAS  Google Scholar 

  78. Woodhouse KW, Mutch E, Williams FM, et al. The effect of age on pathways of drug metabolism in human liver. Age Ageing 1984; 13: 328–34

    PubMed  CAS  Google Scholar 

  79. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153(3): 311–20

    PubMed  CAS  Google Scholar 

  80. Rasmussen BB, Maenpaa J, Pelkonen O, et al. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 1995; 39(2): 151–9

    PubMed  CAS  Google Scholar 

  81. von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    Google Scholar 

  82. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9

    PubMed  CAS  Google Scholar 

  83. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56: 601–7

    PubMed  Google Scholar 

  84. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56: 601–7

    PubMed  CAS  Google Scholar 

  85. von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibitors of alprazolam metabolism in vitro: effect of serotonin-reuptake-inhibitor antidepressants, ketoconazole and quinidine. Br J Clin Pharmacol 1994; 38: 23–31

    CAS  Google Scholar 

  86. Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    PubMed  CAS  Google Scholar 

  87. Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25: 450–82

    PubMed  CAS  Google Scholar 

  88. Otton VS, Dafang W, Russell TJ, et al. Inhibition by fluoxetine of cytochrome P450 2D6 activity. Clin Pharmacol Ther 1993; 53: 401–9

    PubMed  CAS  Google Scholar 

  89. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5

    PubMed  CAS  Google Scholar 

  90. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 470–86

    Google Scholar 

  91. Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 1991; 104: 323–7

    PubMed  CAS  Google Scholar 

  92. Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazalom by human liver cytochrome P450IIIA 4. Mol Pharmacol 1989; 36: 89–96

    PubMed  CAS  Google Scholar 

  93. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin but not debrisoquine hydroxylation pheno-type. Clin Pharmacol Ther 1989; 45: 348–55

    PubMed  CAS  Google Scholar 

  94. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  95. Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquine and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–97

    PubMed  CAS  Google Scholar 

  96. Jurima M, Inaba T, Kadar D, et al. Genetic polymorphism of mephenytoin p (4′)-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol 1985; 19: 483–7

    PubMed  CAS  Google Scholar 

  97. Nakamura K, Goto F, Ray WA, et al. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol 1985; 38: 402–8

    CAS  Google Scholar 

  98. Crowley JJ, Cusack BJ, Jue SG, et al. Induction of theophylline metabolism by phenytoin is unaltered by aging. Clin Res 1986; 34: 396A

    Google Scholar 

  99. Twum-Barima Y, Finnigan T, Habash AI, et al. Impaired enzyme induction by rifampicin in the elderly. Br J Clin Pharmacol 1984; 17: 595–6

    PubMed  CAS  Google Scholar 

  100. Cusack BJ, Kelly JG, Lavan J, et al. Theophylline kinetics in relation to age: The importance of smoking. Br J Clin Pharmacol 1980; 10: 109–14

    PubMed  CAS  Google Scholar 

  101. Mucklow JC, Fraser HS. The effects of age and smoking upon antipyrine metabolism. Br J Clin Pharmacol 1980; 9: 63–4

    Google Scholar 

  102. Salem SAM, Rajjayabun P, Shepherd AMM, et al. Reduced induction of drug metabolism in the elderly. Age Ageing 1978; 7: 68–73

    PubMed  CAS  Google Scholar 

  103. Vestal RE, Norris AH, Tobin JD, et al. Antipyrine metabolism in man: influence of age, alcohol, caffeine and smoking. Clin Pharmacol Ther 1975; 18: 425–32

    PubMed  CAS  Google Scholar 

  104. Bigelow GE. Human drug abuse liability assessment: opioids and analgesics. Br J Addict 1991; 86: 1615–28

    PubMed  CAS  Google Scholar 

  105. Adler TK, Fujimoto JM, Way EL, et al. The metabolic fate of codeine in man. J Pharmacol Exp Ther 1955; 114: 251–62

    PubMed  CAS  Google Scholar 

  106. Yue QY, Svensson JO, Alm C, et al. Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 1989; 28: 639–45

    PubMed  CAS  Google Scholar 

  107. Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet 1988; 2: 914–5

    PubMed  CAS  Google Scholar 

  108. Guay DRP, Awni WM, Findlay JWA, et al. Pharmacokinetics and pharmacodynamics of codeine in end-stage renal disease. Clin Pharmacol Ther 1988; 43: 63–71

    PubMed  CAS  Google Scholar 

  109. Yue QY, Hasselström J, Svensson JO, et al. Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1991; 31: 635–42

    PubMed  CAS  Google Scholar 

  110. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6β-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–83

    PubMed  CAS  Google Scholar 

  111. Quiding H, Anderson P, Bondesson U, et al. Plasma concentrations of codeine and its metabolite, morphine, after single and repeated oral administration. Eur J Clin Pharmacol 1986; 30: 673–7

    PubMed  CAS  Google Scholar 

  112. Sanfilippo G. Contributo sperimentale all’ipotesi della smetilazione della codeina nell’organismo: I. Influenze della dose sull’assuefazione alla codeina. II. Assuefazione alla codeina attenuta con somministrazione prolungata di morfina. Boll Soc Ital Biol Sper 1948; 24: 723–6

    PubMed  CAS  Google Scholar 

  113. Persson K, Sjöstrom S, Sigurdardottir I, et al. Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan. Br J Clin Pharmacol 1995; 39: 182–6

    PubMed  CAS  Google Scholar 

  114. Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41: 23–6

    PubMed  CAS  Google Scholar 

  115. Irvine RJ, Chen ZR, Somogyi AA, et al. μ-opioid receptor binding affinity of some opiates and their metabolites. Life Sci 1991; 48: 2165–71

    PubMed  Google Scholar 

  116. Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1991; 49: 686–93

    Google Scholar 

  117. Shah JC, Mason WD. Plasma codeine and morphine concentrations after a single oral dose of codeine phosphate. J Clin Pharmacol 1990; 30: 764–6

    PubMed  CAS  Google Scholar 

  118. Guay DRP, Awni WM, Halstenson CE, et al. Pharmacokinetics of codeine after single-and multiple-oral-dose administration to normal volunteers. J Clin Pharmacol 1987; 27: 983–7

    PubMed  CAS  Google Scholar 

  119. Dahlstrom B, Tamsen A, Paalzow L, et al. Patient-controlled analgesic therapy (Pt IV): pharmacokinetics and analgesic plasma concentrations of morphine. Clin Pharmacokinet 1982; 7: 266–79

    PubMed  CAS  Google Scholar 

  120. Quiding H, Oikarinen V, Sane J, et al. Analgesic efficacy after single and repeated doses of codeine and acetaminophen. J Clin Pharmacol 1984; 24: 27–34

    PubMed  CAS  Google Scholar 

  121. Young RES. A two dose evaluation of propoxyphene napsylate and codeine in postoperative pain. Curr Ther Res 1978; 24: 495–502

    Google Scholar 

  122. Gruber CM. Codeine and propoxyphene in postepisiotomy pain: a two dose evaluation. JAMA 1977; 237: 2734–2735

    PubMed  Google Scholar 

  123. Osborne R, Thompson P, Joel S, et al. the analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34: 130–8

    PubMed  CAS  Google Scholar 

  124. Hand CW, Blunnie WP, Claffey LP, et al. Potential analgesic contribution from morphine-6-glucuronide in CSF. Lancet 1987; II: 1207–8

    Google Scholar 

  125. Shimomura K, Kamata O, Ueki S, et al. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971; 105: 45–52

    PubMed  CAS  Google Scholar 

  126. Davies KN, Castleden CM, McBurney A, et al. The effect of ageing on the pharmacokinetics of dihydrocodeine. Eur J Clin Pharmacol 1989; 37: 375–9

    PubMed  CAS  Google Scholar 

  127. Baillie SP, Bateman DN, Coates PE, et al. Age and the pharmacokinetics of morphine. Age Ageing 1989; 18: 258–62

    PubMed  CAS  Google Scholar 

  128. Bodd E, Beylich KM, Christophersen AS, et al. Oral administration of codeine in the presence of ethanol: a pharmacokinetic study in man. Pharmacol Toxicol 1987; 61: 297–300

    PubMed  CAS  Google Scholar 

  129. Rogers JF, Findlay JW, Hull JH, et al. Codeine disposition in smokers and nonsmokers. Clin Pharmacol Ther 1982; 32: 218–27

    PubMed  CAS  Google Scholar 

  130. Steiner E, Iselius L, Alvan G, et al. A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquine. Clin Pharmacol Ther 1985; 38: 394–401

    PubMed  CAS  Google Scholar 

  131. Dayer P, Desmeules J, Striberni R. In vitro forecasting of drugs that may interfere with codeine bioactivation. Eur J Drug Metab Pharmacokinet 1992; 17: 115–20

    PubMed  CAS  Google Scholar 

  132. Romach MK, Sproule B, Kathiramalainathan K, et al. Developing medication strategies as adjuncts to treating prescription opiate dependence and comorbidity. In: Harris LS, editor. Problems of drug dependence. Proceedings of the 57th Annual Scientific Meeting of the College on Problems of Drug Dependence. Rockville: US Department of Health and Human Services, 1996: 120

    Google Scholar 

  133. Teri L, Rabins P, Whitehouse P, et al. Management of behavior disturbance in Alzheimer disease: current knowledge and future direction. Alzheimer Dis Assoc Disord 1992; 6: 77–88

    PubMed  CAS  Google Scholar 

  134. Ancill RJ, Holliday SG. Treatment of depression in the elderly: a Canadian view. Prog Neuropsychopharmacol Biol Psychiatry 1990; 14: 655–61

    PubMed  CAS  Google Scholar 

  135. Reisberg B, Borenstein J, Salob SP, et al. Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J Clin Psychiatry 1987; 48 Suppl. 5: 9–15

    PubMed  Google Scholar 

  136. Blazer DG, Bachar JR, Manton KG. Suicide in late life: review and commentary. J Am Geriatr Soc 1986; 34: 519–25

    PubMed  CAS  Google Scholar 

  137. Eichelbaum M, Gross AS. The genetic polymorphism of debrisoquine/sparteine metabolism — clinical aspects. Pharmacol Ther 1990; 46: 377–94

    PubMed  CAS  Google Scholar 

  138. Dahl ML, Johansson I, Palmertz MP, et al. Analysis of the CYP2D6 gene in relation to debrisoquine and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther 1992; 51: 12–7

    PubMed  CAS  Google Scholar 

  139. Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 1995; 57: 265–9

    PubMed  CAS  Google Scholar 

  140. Dahl M-L, Johansson I, Bertilsson L, et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population: analysis of the molecular genetic basis. J Pharmacol Exp Ther 1995; 274: 516–20

    PubMed  CAS  Google Scholar 

  141. Bertilsson L, Dahl M-L, Sjöqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341: 63

    PubMed  CAS  Google Scholar 

  142. Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D-locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–9

    PubMed  CAS  Google Scholar 

  143. Yue QY, Svensson JO, Sjöqvist F, et al. A comparison of the pharmacokinetics of codeine and its metabolites in healthy Chinese and Caucasian extensive hydroxylators of debrisoquine. Br J Clin Pharmacol 1991; 31: 643–7

    PubMed  CAS  Google Scholar 

  144. Kalow W. Interethnic variation of drug metabolism. Trends Pharmacol Sci 1991; 12: 102–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio A. Naranjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdemir, V., Fourie, J., Busto, U. et al. Pharmacokinetic Changes in the Elderly. Clin-Pharmacokinet 31, 372–385 (1996). https://doi.org/10.2165/00003088-199631050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631050-00004

Keywords

Navigation