Skip to main content
Log in

On Synge-type angle condition for d-simplices

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in ℝd that degenerate in some way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Stuttgart, 1999.

    MATH  Google Scholar 

  2. T. Apel, M. Dobrowolski: Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277–293.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. E. Barnhill, J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1975), 215–229.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bartoš: The sine theorem for simplexes in En. Cas. Mat. 93 (1968), 273–277 (In Czech).

    MATH  Google Scholar 

  6. J. Brandts, S. Korotov, M. Křížek: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227–2233.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Brandts, S. Korotov, M. Křížek: On the equivalence of ball conditions for simplicial finite elements in Rd. Appl. Math. Lett. 22 (2009), 1210–1212.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brandts, S. Korotov, M. Křížek: Generalization of the Zlámal condition for simplicial finite elements in Rd. Appl. Math., Praha 56 (2011), 417–424.

    MATH  Google Scholar 

  9. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, S.-H. Teng: Sliver exudation. Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999. ACM, New York, 1999, pp. 1–13.

    Book  MATH  Google Scholar 

  10. P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam, 1978.

    Google Scholar 

  11. H. Edelsbrunner: Triangulations and meshes in computational geometry. Acta Numerica (2000), 133–213.

    Google Scholar 

  12. F. Eriksson: The law of sines for tetrahedra and n-simplices. Geom. Dedicata 7 (1978), 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Hannukainen, S. Korotov, M. Křížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérées. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 (1976), 43–60.

    Google Scholar 

  15. K. Kobayashi, T. Tsuchiya: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485–499.

    MathSciNet  MATH  Google Scholar 

  16. K. Kobayashi, T. Tsuchiya: On the circumradius condition for piecewise linear triangular elements. Japan J. Ind. Appl. Math. 32 (2015), 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Kobayashi, T. Tsuchiya: Extending Babuška-Aziz’s theorem to higher-order Lagrange interpolation. Appl. Math., Praha 61 (2016), 121–133.

    MATH  Google Scholar 

  18. M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223–232.

    MathSciNet  MATH  Google Scholar 

  19. M. Křížek: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513–520.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Kučera: A note on necessary and sufficient conditions for convergence of the finite element method. Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.). Institute of Mathematics CAS, Prague, 2015, pp. 132–139.

  21. V. Kučera: On necessary and sufficient conditions for finite element convergence. Available at arXiv:1601.02942 (2016).

    Google Scholar 

  22. V. Kučera: Several notes on the circumradius condition. Appl. Math., Praha 61 (2016), 287–298.

    MathSciNet  MATH  Google Scholar 

  23. S. Mao, Z. Shi: Error estimates of triangular finite elements under a weak angle condition. J. Comput. Appl. Math. 230 (2009), 329–331.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Oswald: Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math., Praha 60 (2015), 473–484.

    MATH  Google Scholar 

  25. K. Rektorys: Survey of Applicable Mathematics. Vol. I. Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht, 1994.

    Book  MATH  Google Scholar 

  26. G. Strang, G. J. Fix: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey, 1973.

    MATH  Google Scholar 

  27. J. L. Synge: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, Cambridge, 1957.

    Google Scholar 

  28. A. Ženíšek: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355–377 (In Czech).

    MathSciNet  MATH  Google Scholar 

  29. M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Hannukainen.

Additional information

The third author was supported by the grant GA14-02067S of the Grant Agency of the Czech Republic and RVO 67985840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannukainen, A., Korotov, S. & Křížek, M. On Synge-type angle condition for d-simplices. Appl Math 62, 1–13 (2017). https://doi.org/10.21136/AM.2017.0132-16

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0132-16

Keywords

MSC 2010

Navigation