Skip to main content
Log in

Recent advances in the study of testicular nuclear receptor 4

  • Perspective
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Testicular nuclear receptor 4 (TR4), also known as NR2C2 (nuclear receptor subfamily 2, group C, member 2), is a transcriptional factor and a member of the nuclear receptor family. TR4 was initially cloned from human and rat hypothalamus, prostate, and testes libraries. For almost two decades, its specific tissue distribution, genomic organization, and chromosomal assignment have been well investigated in humans and animals. However, it has been very difficult to study TR4’s physiological functions due to a lack of specific ligands. Gene knock-out animal techniques provide an alternative approach for defining the biological functions of TR4. In vivo studies of TR4 gene knockout mice (TR4 −/−) found that they display severe spinal curvature, subfertility, premature aging, and prostate prostatic intraepithelial neoplasia (PIN) development. Upstream modulators, downstream target gene regulation, feedback mechanisms, and differential modulation mediated by the recruitment of other nuclear receptors and coregulators have been identified in studies using the TR4 −/− phenotype. With the establishment of a tissue-specific TR4 −/− mouse model, research on TR4 will be more convenient in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranda, A., Pascual, A., 2001. Nuclear hormone receptors and gene expression. Physiol. Rev., 81(3):1269–1304.

    PubMed  CAS  Google Scholar 

  • Bowen, R.L., Atwood, C.S., 2004. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology, 50(5): 265–290. [doi:10.1159/000079125]

    Article  PubMed  Google Scholar 

  • Campbell, A.D., Cui, S., Shi, L., Urbonya, R., Mathias, A., Bradley, K., Bonsu, K.O., Douglas, R.R., Halford, B., Schmidt, L., et al., 2011. Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. PNAS, 108(46):18808–18813. [doi:10.1073/pnas.1104964108]

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., da Silva, S.L., Ideta, R., Lee, Y., Yeh, S., Burbach, J.P., 1994. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. PNAS, 91(13):6040–6044. [doi:10.1073/pnas.91.13.6040]

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.M., Wang, R.S., Lee, Y.F., Liu, N.C., Chang, Y.J., Wu, C.C., Xie, S., Hung, Y.C., Chang, C., 2008. Subfertility with defective folliculogenesis in female mice lacking testicular orphan nuclear receptor 4. Mol. Endocrinol., 22(4):858–867. [doi:10.1210/me.2007-0181]

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.T., Collins, L.L., Chang, S.S., Chang, C., 2008. The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development. Cerebellum, 7(1):9–17. [doi:10.1007/s12311-008-0006-3]

    Article  PubMed  CAS  Google Scholar 

  • Choi, H., Kim, S.J., Park, S.S., Chang, C., Kim, E., 2011. TR4 activates FATP1 gene expression to promote lipid accumulation in 3T3-L1 adipocytes. FEBS Lett., 585(17): 2763–2767. [doi:10.1016/j.febslet.2011.08.002]

    Article  PubMed  CAS  Google Scholar 

  • Collins, L.L., Lee, Y.F., Heinlein, C.A., Liu, N.C., Chen, Y.T., Shyr, C.R., Meshul, C.K., Uno, H., Platt, K.A., Chang, C., 2004. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. PNAS, 101(42):15058–15063. [doi:10.1073/pnas.0405700101]

    Article  PubMed  CAS  Google Scholar 

  • Collins, L.L., Lee, Y.F., Ting, H.J., Lin, W.J., Liu, N.C., Meshul, C.K., Uno, H., Bao, B.Y., Chen, Y.T., Chang, C., 2011. The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reprod. Biol. Endocrinol., 9(1):138. [doi:10.1186/1477-7827-9-138]

    Article  PubMed  CAS  Google Scholar 

  • Cui, S., Kolodziej, K.E., Obara, N., Amaral-Psarris, A., Demmers, J., Shi, L., Engel, J.D., Grosveld, F., Strouboulis, J., Tanabe, O., 2011. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol. Cell. Biol., 31(16):3298–3311. [doi:10.1128/MCB.05310-11]

    Article  PubMed  CAS  Google Scholar 

  • Harada, H., Kuboi, Y., Miki, R., Honda, C., Masushige, S., Nakatsuka, M., Koga, Y., Kato, S., 1998. Cloning of rabbit TR4 and its bone cell-specific activity to suppress estrogen receptor-mediated transactivation. Endocrinology, 139(1):204–212. [doi:10.1210/en.139.1.204]

    Article  PubMed  CAS  Google Scholar 

  • Hirose, T., Fujimoto, W., Tamaai, T., Kim, K.H., Matsuura, H., Jetten, A.M., 1994. TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol. Endocrinol., 8(12):1667–1680. [doi:10.1210/me.8.12.1667]

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y.H., Liao, C.H., Chen, R.N., Liao, C.J., Lin, K.H., 2010. Human testicular orphan receptor 4 enhances thyroid hormone receptor signaling. J. Cell. Physiol., 222(2): 347–356. [doi:10.1002/jcp.21959]

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.S., Okamoto, K., Kim, Y.S., Takeda, Y., Bortner, C.D., Dang, H., Wada, T., Xie, W., Yang, X.P., Liao, G., et al., 2011. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes, 60(1):177–188. [doi:10.2337/db10-0628]

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Xie, S., Yeh, S.D., Lee, Y.F., Collins, L.L., Hu, Y.C., Shyr, C.R., Mu, X.M., Liu, N.C., Chen, Y.T., et al., 2003. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem., 278(47):46919–46926. [doi:10.1074/jbc.M304088200]

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Yang, Z., Liu, N.C., Chang, C., 2005. Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem. Biophys. Res. Commun., 3328 (1):85–90. [doi:10.1016/j.bbrc.2004.12.146]

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Liu, N.C., Yu, I.C., Lin, H.Y., Lee, Y.F., Sparks, J.D., Chen, L.M., Chang, C., 2011. Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-COA desaturase 1 gene expression with altered insulin sensitivity. Diabetes, 60(5):1493–1503. [doi:10.2337/db10-0393]

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.J., Lee, Y.F., Chang, C., 2001. TR4 orphan receptor represses the human steroid 21-hydroxylase gene expression through the monomeric AGGTCA motif. Biochem. Biophys. Res. Commun., 285(5):1361–1368. [doi:10.1006/bbrc.2001.5342]

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.F., Young, W.J., Burbach, J.P., Chang, C., 1998. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J. Biol. Chem., 273(22):13437–13443. [doi:10.1074/jbc.273.22.13437]

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.F., Young, W.J., Lin, W.J., Shyr, C.R., Chang, C., 1999. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J. Biol. Chem., 274(23): 16198–16205. [doi:10.1074/jbc.274.23.16198]

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.F., Lee, H.J., Chang, C., 2002. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J. Steroid Biochem. Mol. Biol., 81(4–5): 291–308. [doi:10.1016/S0960-0760(02)00118-8]

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.F., Liu, S., Liu, N.C., Wang, R.S., Chen, L.M., Lin, W.J., Ting, H.J., Ho, H.C., Li, G., Puzas, E.J., et al., 2011. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab., 301(1):E91–E98. [doi:10.1152/ajpendo.00701.2010]

    Article  PubMed  CAS  Google Scholar 

  • Li, G., Lee, Y.F., Liu, S., Cai, Y., Xie, S., Liu, N.C., Bao, B.Y., Chen, Z., Chang, C., 2008. Oxidative stress stimulates testicular orphan receptor 4 through forkhead transcription factor forkhead box O3a. Endocrinology, 149(7): 3490–3499. [doi:10.1210/en.2008-0121]

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.J., Ho, H.C., Lee, Y.F., Liu, N.C., Liu, S., Li, G., Shyr, C.R., Chang, C., 2012. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis. Reprod. Biol. Endocrinol., 10(1):43. [doi:10.1186/1477-7827-10-43]

    Article  PubMed  CAS  Google Scholar 

  • Liu, N.C., Lin, W.J., Kim, E., Collins, L.L., Lin, H.Y., Yu, I.C., Sparks, J.D., Chen, L.M., Lee, Y.F., Chang, C., 2007. Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis. Diabetes, 56(12):2901–2909. [doi:10.2337/db07-0359]

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Lee, Y.F., Chou, S., Uno, H., Li, G., Brookes, P., Massett, M.P., Wu, Q., Chen, L.M., Chang, C., 2011a. Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I. Mol. Endocrinol., 25(8):1301–1310. [doi:10.1210/me.2010-0455]

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Yan, S.J., Lee, Y.F., Liu, N.C., Ting, H.J., Li, G., Wu, Q., Chen, L.M., Chang, C., 2011b. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via cockayne syndrome B protein-mediated transcription-coupled DNA repair. J. Biol. Chem., 286(44): 38103–38108. [doi:10.1074/jbc.M111.259523]

    Article  PubMed  CAS  Google Scholar 

  • Mu, X., Lee, Y.F., Liu, N.C., Chen, Y.T., Kim, E., Shyr, C.R., Chang, C., 2004. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol. Cell. Biol., 24(13):5887–5899. [doi:10.1128/MCB.24.13.5887-5899.2004]

    Article  PubMed  CAS  Google Scholar 

  • Popov, V.M., Wang, C., Shirley, L.A., Rosenberg, A., Li, S., Nevalainen, M., Fu, M., Pestell, R.G., 2007. The functional significance of nuclear receptor acetylation. Steroids, 72(2):221–230. [doi:10.1016/j.steroids.2006.12.001]

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi, M., Escriva Garcia, H., Laudet, V., 2003. The nuclear receptor superfamily. J. Cell. Sci., 116(Pt 4): 585–586. [doi:10.1242/jcs.00247]

    Article  PubMed  Google Scholar 

  • Shyr, C.R., Kang, H.Y., Tsai, M.Y., Liu, N.C., Ku, P.Y., Huang, K.E., Chang, C., 2009. Roles of testicular orphan nuclear receptors 2 and 4 in early embryonic development and embryonic stem cells. Endocrinology, 150(5): 2454–2462. [doi:10.1210/en.2008-1165]

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, O., Katsuoka, F., Campbell, A.D., Song, W., Yamamoto, M., Tanimoto, K., Engel, J.D., 2002. An embryonic/fetal β-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J, 21(13):3434–3442. [doi:10.1093/emboj/cdf340]

    Article  PubMed  CAS  Google Scholar 

  • Tsai, N.P., Huq, M., Gupta, P., Yamamoto, K., Kagechika, H., Wei, L.N., 2009. Activation of testicular orphan receptor 4 by fatty acids. Biochim. Biophys. Acta, 1789(11–12): 734–740. [doi:10.1016/j.bbagrm.2009.09.010]

    PubMed  CAS  Google Scholar 

  • Wang, C.P., Lee, Y.F., Chang, C., Lee, H.J., 2006. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor. Biochem. Biophys. Res. Commun., 351(1):204–208. [doi:10.1016/j.bbrc.2006.10.021]

    Article  PubMed  CAS  Google Scholar 

  • Xie, S., Lee, Y.F., Kim, E., Chen, L.M., Ni, J., Fang, L.Y., Liu, S., Lin, S.J., Abe, J., Berk, B., et al., 2009. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. PNAS, 106(32):13353–13358. [doi:10.1073/pnas.0905724106]

    Article  PubMed  CAS  Google Scholar 

  • Xie, S., Ni, J., Lee, Y.F., Liu, S., Li, G., Shyr, C.R., Chang, C., 2011. Increased acetylation in the DNA-binding domain of TR4 nuclear receptor by the coregulator ARA55 leads to suppression of TR4 transactivation. J. Biol. Chem., 286(24):21129–21136. [doi:10.1074/jbc.M110.208181]

    Article  PubMed  CAS  Google Scholar 

  • Yan, S.J., Lee, Y.F., Ting, H.J., Liu, N.C., Liu, S., Lin, S.J., Yeh, S.D., Li, G., Chang, C., 2012. Deficiency in TR4 nuclear receptor abrogates GADD45A expression and increases cytotoxicity induced by ionizing radiation. Cell Mol. Biol. Lett., 17(2):309–322. [doi:10.2478/s11658-012-0012-9]

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z.H., Karam, W.G., Staudinger, J.L., Medvedev, A., Ghanayem, B.I., Jetten, A.M., 1998. Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J. Biol. Chem., 273(18):10948–10957. [doi:10.1074/jbc.273.18.10948]

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Downes, M., Yu, R.T., Bookout, A.L., He, W., Straume, M., Mangelsdorf, D.J., Evans, R.M., 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell, 126(4):801–810. [doi:10.1016/j.cell.2006.06.050]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Dufau, M.L., 2000. Nuclear orphan receptors regulate transcription of the gene for the human luteinizing hormone receptor. J. Biol. Chem., 275(4): 2763–2770. [doi:10.1074/jbc.275.4.2763]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X.E., Suino-Powell, K.M., Xu, Y., Chan, C.W., Tanabe, O., Kruse, S.W., Reynolds, R., Engel, J.D., Xu, H.E., 2011. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J. Biol. Chem., 286(4): 2877–2885. [doi:10.1074/jbc.M110.168740]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chawnshang Chang or Gong-hui Li.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30973001), the National Basic Research Program (973) of China (No. 2012CB518304), the Zhejiang Provincial Natural Science Foundation of China (No. Y2110446), the Qianjiang Talents Project of Zhejiang Province (No. 2011R10039), and the PAO Yu-kong International Foundation for Scholars and Scientists, China

Dr. Chawnshang CHANG is a George Hoyt Whipple Distinguished Professor of Pathology in University of Rochester, USA. He earned his PhD degree from the University of Chicago, USA in 1985. In 1988, Dr. CHANG succeeded in becoming the first scientist to clone the complete human and rat androgen receptors (AR). It is the landmark discovery in the Androgen-AR field. Over the next 25 years, he continued his research on AR and three nuclear orphan receptors TR2, TR3, and TR4 he isolated from human testis, and had more than 350 papers published, including Science, Nature, and so on.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Xf., Yu, Sc., Chen, Bd. et al. Recent advances in the study of testicular nuclear receptor 4. J. Zhejiang Univ. Sci. B 14, 171–177 (2013). https://doi.org/10.1631/jzus.B1200357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1200357

CLC number

Navigation